[en] We present the epitaxial growth of Ge and Ge0.94Sn0.06 layers with 1.4% and 0.4% tensile strain, respectively, by reduced pressure chemical vapor deposition on relaxed GeSn buffers and the formation of high-k/metal gate stacks thereon. Annealing experiments reveal that process temperatures are limited to 350 °C to avoid Sn diffusion. Particular emphasis is placed on the electrical characterization of various high-k dielectrics, as 5 nm Al2O3, 5 nm HfO2, or 1 nm Al2O3 / 4 nm HfO2, on strained Ge and strained Ge0.94Sn0.06. Experimental capacitance− voltage characteristics are presented and the effect of the small bandgap, like strong response of minority carriers at applied field, are discussed via simulations.
Disciplines :
Physics
Author, co-author :
Wirths, Stephan; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Stange, Daniela; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Pampillon, Maria-Angela; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Tiedemann, Andreas; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Mussler, Gregor; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Fox, Alfred; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Breuer, Uwe; Forschungszentrum Jülich > Central Institute for Engineering, Electronics and Analytics
Baert, Bruno ; Université de Liège > Département de physique > Physique des solides, interfaces et nanostructures
San Andres, Enrique; Universidad Complutense de Madrid > Departamento Física Aplicada III : Electricidad y Electrońica
Nguyen, Ngoc Duy ; Université de Liège > Département de physique > Physique des solides, interfaces et nanostructures
Hartmann, Jean-Michel; Commissariat à l'Energie Atomique (Saclay) - CEA > LETI
Ikonic, Zoran; University of Leeds > Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering
Mantl, Siegfried; Forschungszentrum Jülich > PGI 9 and JARA-FIT
Buca, Dan; Forschungszentrum Jülich > PGI 9 and JARA-FIT
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Pillarisetty, R. Academic and Industry Research Progress in Germanium Nanodevices Nature 2011, 479, 324-328
Dobbie, A.; Myronov, M.; Morris, R. J. H.; Hassan, A. H. A.; Prest, M. J.; Shah, V. a.; Parker, E. H. C.; Whall, T. E.; Leadley, D. R. Ultra-High Hole Mobility Exceeding One Million in a Strained Germanium Quantum Well Appl. Phys. Lett. 2012, 101, 172108
Zhao, M.; Liang, R.; Wang, J.; Xu, J. Improved Electrical Properties of Ge Metal-Oxide-Semiconductor Devices with HfO2 Gate Dielectrics Using an Ultrathin GeSnOx Film as the Surface Passivation Layer Appl. Phys. Lett. 2013, 102, 142906
Gupta, S.; Chen, R.; Harris, J. S.; Saraswat, K. C. Atomic Layer Deposition of Al2O3 on Germanium-Tin (GeSn) and Impact of Wet Chemical Surface Pre-Treatment Appl. Phys. Lett. 2013, 103, 241601
Hudait, M. K.; Zhu, Y. Energy Band Alignment of Atomic Layer Deposited HfO2 Oxide Film on Epitaxial (100)Ge, (110)Ge, and (111)Ge Layers J. Appl. Phys. 2013, 113, 114303
Gusev, E. P.; Shang, H.; Copel, M.; Gribelyuk, M.; D'Emic, C.; Kozlowski, P.; Zabel, T. Microstructure and Thermal Stability of HfO2 Gate Dielectric Deposited on Ge(100) Appl. Phys. Lett. 2004, 85, 2334
Yang, Y.; Guo, P.; Han, G.; Lu Low, K.; Zhan, C.; Yeo, Y.-C. Simulation of Tunneling Field-Effect Transistors with Extended Source Structures J. Appl. Phys. 2012, 111, 114514
Kao, K.-H.; Verhulst, A. S.; Van de Put, M.; Vandenberghe, W. G.; Soree, B.; Magnus, W.; De Meyer, K. Tensile Strained Ge Tunnel Field-Effect Transistors: K · P Material Modeling and Numerical Device Simulation J. Appl. Phys. 2014, 115, 044505
Sánchez-Pérez, J. R.; Boztug, C.; Chen, F.; Sudradjat, F. F.; Paskiewicz, D. M.; Jacobson, R. B.; Lagally, M. G.; Paiella, R. Direct-Bandgap Light-Emitting Germanium in Tensilely Strained Nanomembranes Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 18893-18898
Gupta, S.; Chen, R.; Huang, Y.; Kim, Y.; Sanchez, E.; Harris, J. S.; Saraswat, K. C. Highly Selective Dry Etching of Germanium over Germanium-Tin (Ge1-xSnx): A Novel Route for Ge1-xSnx Nanostructure Fabrication Nano Lett. 2013, 13, 3783-3790
Wirths, S.; Tiedemann, A. T.; Ikonic, Z.; Harrison, P.; Hollander, B.; Stoica, T.; Mussler, G.; Myronov, M.; Hartmann, J. M.; Grützmacher, D.; Buca, D.; Mantl, S. Band Engineering and Growth of Tensile Strained Ge/(Si)GeSn Heterostructures for Tunnel Field Effect Transistors Appl. Phys. Lett. 2013, 102, 192103
Kotlyar, R.; Avci, U. E.; Cea, S.; Rios, R.; Linton, T. D.; Kuhn, K. J.; Young, I. A. Bandgap Engineering of Group IV Materials for Complementary N and P Tunneling Field Effect Transistors Appl. Phys. Lett. 2013, 102, 113106
Zhu, Y.; Maurya, D.; Priya, S.; Hudait, M. K. Tensile-Strained Nanoscale Ge/In0.16Ga0.84 As Heterostructure for Tunnel Field Effect Transistor ACS Appl. Mater. Interfaces 2014, 6, 4947-4953
Lu Low, K.; Yang, Y.; Han, G.; Fan, W.; Yeo, Y. Electronic Band Structure and Effective Mass Parameters of Ge1-xSnx Alloys J. Appl. Phys. 2012, 112, 103715
Wirths, S.; Ikonic, Z.; Tiedemann, A. T.; Hollãnder, B.; Stoica, T.; Mussler, G.; Breuer, U.; Hartmann, J. M.; Benedetti, A.; Chiussi, S.; Grützmacher, D.; Mantl, S.; Buca, D. Tensely Strained GeSn Alloys as Optical Gain Media Appl. Phys. Lett. 2013, 103, 192110
Vincent, B.; Gencarelli, F.; Bender, H.; Merckling, C.; Douhard, B.; Petersen, D. H.; Hansen, O.; Henrichsen, H. H.; Meersschaut, J.; Vandervorst, W.; Heyns, M.; Loo, R.; Caymax, M. Undoped and in-Situ B Doped GeSn Epitaxial Growth on Ge by Atmospheric Pressure-Chemical Vapor Deposition Appl. Phys. Lett. 2011, 99, 152103
D'Costa, V. R.; Fang, Y. Y.; Tolle, J.; Kouvetakis, J.; Menéndez, J. Ternary GeSiSn Alloys: New Opportunities for Strain and Band Gap Engineering Using Group-IV Semiconductors Thin Solid Films 2010, 518, 2531-2537
Wirths, S.; Buca, D.; Ikonic, Z.; Harrison, P.; Tiedemann, A. T.; Hollander, B.; Stoica, T.; Mussler, G.; Breuer, U.; Hartmann, J. M.; Grützmacher, D.; Mantl, S. SiGeSn Growth Studies Using Reduced Pressure Chemical Vapor Deposition towards Optoelectronic Applications Thin Solid Films 2013, 557, 183-187
Bahder, T. Eight-Band K·p Model of Strained Zinc-Blende Crystals Phys. Rev. B 1990, 41, 11992-12001
Gupta, S.; Vincent, B.; Yang, B.; Lin, D.; Gencarelli, F.; Lin, J.-Y. J.; Chen, R.; Richard, O.; Bender, H.; Magyari-Kope, B.; Caymax, M.; Dekoster, J.; Nishi, Y.; Saraswat, K. C. Towards High Mobility GeSn Channel nMOSFETs: Improved Surface Passivation Using Novel Ozone Oxidation Method. In 2012 International Electron Devices Meeting; IEEE: Piscataway, NJ, 2012; pp 16.2.1-16.2.4.
Wirths, S.; Buca, D.; Mussler, G.; Tiedemann, A. T.; Hollander, B.; Bernardy, P.; Stoica, T.; Grutzmacher, D.; Mantl, S. Reduced Pressure CVD Growth of Ge and Ge1-xSnx Alloys ECS J. Solid State Sci. Technol. 2013, 2, N99-N102
Baert, B.; Schmeits, M.; Nguyen, N. D. Study of the Energy Distribution of the Interface Trap Density in a GeSn MOS Structure by Numerical Simulation of the Electrical Characteristics Appl. Surf. Sci. 2014, 291, 25-30
Engel-Herbert, R.; Hwang, Y.; Stemmer, S. Comparison of Methods to Quantify Interface Trap Densities at dielectric/III-V Semiconductor Interfaces J. Appl. Phys. 2010, 108, 124101
Brammertz, G.; Martens, K.; Sioncke, S.; Delabie, A.; Caymax, M.; Meuris, M.; Heyns, M. Characteristic Trapping Lifetime and Capacitance-Voltage Measurements of GaAs Metal-Oxide-Semiconductor Structures Appl. Phys. Lett. 2007, 91, 133510
Electronic Archive - New Semiconductor Materials. Characteristics and Properties http://www.ioffe.ru/SVA/NSM/Semicond/Ge/index.html.
Nicollian, E.; Brews, J. MOS/Metal Oxide Semiconductor/Physics and Technology; Wiley-Interscience: New York, 1982.
Deen, D. A.; Champlain, J. G. High Frequency Capacitance-Voltage Technique for the Extraction of Interface Trap Density of the Heterojunction Capacitor: Terman's Method Revised Appl. Phys. Lett. 2011, 99, 053501
Martens, K.; Chui, C. O.; Brammertz, G.; De Jaeger, B.; Kuzum, D.; Meuris, M.; Heyns, M.; Krishnamohan, T.; Saraswat, K.; Maes, H. E.; Groeseneken, G. On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates IEEE Trans. Electron Devices 2008, 55, 547-556
Schroder, D. K. Semiconductor Material and Device Characterizaion, third ed.; John Wiley & Sons: Hoboken, NJ, 2006.
Nguyen, N. D.; Schmeits, M. Numerical Simulation of Impedance and Admittance of OLEDs Phys. Status Solidi 2006, 203, 1901-1914
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.