Cold roll forming; Finite element method; ALE formalism; Springback
Abstract :
[en] The Arbitrary Lagrangian Eulerian (ALE) formalism is a breakthrough technique in the numerical simulation of the continuous-type roll-forming process. In contrast to the classical Lagrangian approach, the ALE formalism can compute the hopefully stationary state for the entire mill length with definitely effortless set-up tasks thanks to a nearly-stationary mesh. In this paper, advantages of ALE and Lagrangian formalisms are extensively discussed for simulating such continuous-type processes. Through a highly complex industrial application, the ease of use of ALE modelling is illustrated with the in-house code METAFOR. ALE and Lagrangian results are in good agreement with each other.
Disciplines :
Materials science & engineering
Author, co-author :
Crutzen, Yanick ; Université de Liège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Boman, Romain ; Université de Liège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Papeleux, Luc ; Université de Liège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Ponthot, Jean-Philippe ; Université de Liège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kacar I., Ozturk F. Roll forming applications for automotive industry. OTEKON, the 7th Automotive Technologies Congress 2014, 26-27.
Cubberly W., Bakerjian R. Tool and Manufacturing Engineers Handbook 1989, Society of Manufacturing Engineers. desk edition.
Halmos G. Roll Forming Handbook, Manufacturing Engineering and Materials Processing 2010, Taylor & Francis.
data Sheet Metal Solutions GmbH COPRA RF http://www.datam.de/en/products-solutions/roll-forming/.
METAFOR Website. http://metafor.ltas.ulg.ac.be/.
Ponthot J.-P. Traitement unifié de la mécanique des milieux continus solides en grandes transformations par la méthode des éléments finis 1995, (in French), Ph.D. thesis, Université de Liège, Liège, Belgium.
Bui Q.V., Boman R., Papeleux L., Wouters P., Kergen R., Daolio G., Duroux P., Flores P., Habraken A.-M., Ponthot J.-P. Springback and twist prediction of roll formed parts. Proceedings of IDDRG 2006: International Deep Drawing Research Group Conference 2006, 567-574.
Sheikh M., Palavilayil R. An assessment of finite element software for application to the roll-forming process. J. Mater. Process. Technol. 2006, 180(1):221-232.
Dutton T., Richardson P., Duffett G. Simulating the complete forming sequence for a roll formed automotive component using ls-dyna. RollFORM'09: 1st International Congress on Roll Forming 2009, 49-55.
Joo B., Lee H., Kim D., Moon Y. A study on forming characteristics of roll forming process with high strength steel. The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes 2011, vol. 1383:1034-1040. AIP Publishing. 10.1063/1.3624622.
Falsafi J., Demirci E., Silberschmidt V. Numerical study of strain-rate effect in cold rolls forming of steel. J. Phys. Conf. Ser. 2013, 451:12041-12047. IOP Publishing.
Boman R., Papeleux L., Bui Q.V., Ponthot J.-P. Application of the arbitrary Lagrangian Eulerian formulation to the numerical simulation of cold roll forming process. J. Mater. Process. Technol. 2006, 177(1):621-625. 10.1016/j.jmatprotec.2006.04.120.
Bui Q.V., Ponthot J.-P. Numerical simulation of cold roll-forming processes. J. Mater. Process. Technol. 2008, 202(1-3):275-282. 10.1016/j.jmatprotec.2007.08.073.
Boman R., Ponthot J.-P. Continuous roll forming simulation using arbitrary Lagrangian Eulerian formalism. Key Eng. Mater. 2011, 473:564-571. 10.4028/www.scientific.net/KEM.473.564.
Depauw A., Herisson D., Boman R., Kergen R. Roll forming of ultra high strength steels: progresses in experimental and modelling knowledge. Proceedings of International Roll Forming Congress 2009 2009, 101-108.
Sheu J.-J. Simulation and optimization of the cold roll-forming process. Materials Processing and Design: Modeling, Simulation and Applications-NUMIFORM 2004-Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes 2004, vol. 712:452-457. AIP Publishing.
Görtan M.O., Vucic D., Groche P., Livatyali H. Roll forming of branched profiles. J. Mater. Process. Technol. 2009, 209(17):5837-5844.
Galdos L., Larrañaga J., Uncilla L., Lete H., Arrizabalaga G. Process simulation and experimental tests of cold roll forming of a u-channel made of different ultra high strength steel. RollFORM'09: 1st International Congress on Roll Forming 2009, 75-82.
Paralikas J., Salonitis K., Chryssolouris G. Investigation of the roll forming flower design techniques on main redundant deformations on symmetrical profiles from AHSS. RollFORM'09: 1st International Congress on Roll Forming 2009, 83-91.
Paralikas J., Salonitis K., Chryssolouris G. Optimization of roll forming process parameters-a semi-empirical approach. Int. J. Adv. Manuf. Technol. 2010, 47(9-12):1041-1052.
Abvabi A., Rolfe B., Larranaga J., Glados L., Yang C., Weiss M. Using the solid-shell element to model the roll forming of large radii profiles. Steel Research Journal: Proceedings of the 14th International Conference on Metal Forming 2012, 711-714. Wiley.
Wiebenga J., Weiss M., Rolfe B., Van Den Boogaard A. Product defect compensation by robust optimization of a cold roll forming process. J. Mater. Process. Technol. 2013, 213(6):978-986.
Groche P., Mueller C., Traub T., Butterweck K. Experimental and numerical determination of roll forming loads. Steel Res. Int. 2014, 85(1):112-122. 10.1002/srin.201300190.
data M Sheet Metal Solutions GmbH COPRA FEA RF http://www.datam.de/en/products-solutions/simulation-with-fea/.
Chung J., Hulbert G.M. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 1993, 60(2):371-375. 10.1115/1.2900803.
Donea J., Huerta A., Ponthot J.-P., Rodríguez-Ferran A. Arbitrary Lagrangian-Eulerian Methods, vol. 1 2004, 413-437. John Wiley & Sons, Ltd, Ch. 14. 10.1002/0470091355.ecm009.
Benson D.J. An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Methods Appl. Mech. Eng. 1989, 72(3):305-350.
Boman R., Ponthot J.-P. Efficient ALE mesh management for 3D quasi-Eulerian problems. Int. J. Numer. Methods Eng. 2012, 92(10):857-890. 10.1002/nme.4361.
Boman R., Ponthot J.-P. Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian-Eulerian formulation. Comput. Methods Appl. Mech. Eng. 2004, 193(39):4323-4353. 10.1016/j.cma.2004.01.034.
Benson D.J. Momentum advection on unstructured staggered quadrilateral meshes. Int. J. Numer. Methods Eng. 2008, 75(13):1549-1580.
Boman R., Ponthot J.-P. Enhanced ALE data transfer strategy for explicit and implicit thermomechanical simulations of high-speed processes. Int. J. Impact Eng. 2013, 53:62-73. 10.1016/j.ijimpeng.2012.08.007.
Reinders J. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism 2007, O'Reilly Media, Inc.
Dagum L., Menon R. OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998, 5(1):46-55.
Kuzmin A., Luisier M., Schenk O. Fast methods for computing selected elements of the Green's function in massively parallel nanoelectronic device simulations. Euro-Par 2013 Parallel Processing 2013, 533-544. Springer.
Schenk O., Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 2004, 20(3):475-487.
Flores P. Development of experimental equipment and identification procedures for sheet metal constitutive laws 2005, Ph.D. thesis, University of Liège.
Flores P., Habraken A.-M. Material identification of dual phase steel DP1000 2005, Tech. rep., University of Liège.
Bui Q.V., Papeleux L., Ponthot J.-P. Numerical simulation of springback using enhanced assumed strain elements. J. Mater. Process. Technol. 2004, 153:314-318. 10.1016/j.jmatprotec.2004.04.342.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.