[en] Two laboratory mutants of NDM-1 were generated by replacing the isoleucine at position 35 with threonine and serine residues: the NDM-1(I35T)and NDM-1(I35S)enzymes. These mutants were well characterized, and their kinetic parameters were compared with those of the NDM-1 wild type. Thekcat,Km, andkcat/Kmvalues calculated for the two mutants were slightly different from those of the wild-type enzyme. Interestingly, thekcat/Kmof NDM-1(I35S)for loracarbef was about 14-fold higher than that of NDM-1. Far-UV circular dichroism (CD) spectra of NDM-1 and NDM-1(I35T)and NDM-1(I35S)enzymes suggest local structural rearrangements in the secondary structure with a marked reduction of alpha-helix content in the mutants.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Marcoccia, Francesca
Bottoni, Carlo
Sabatini, Alessia
Colapietro, Martina
Mercuri, Paola ; Université de Liège > Département des sciences de la vie > Macromolécules biologiques
Galleni, Moreno ; Université de Liège > Département des sciences de la vie > Macromolécules biologiques
Kerff, Frédéric ; Université de Liège > Département des sciences de la vie > Centre d'ingénierie des protéines
Matagne, André ; Université de Liège > Département des sciences de la vie > Enzymologie et repliement des protéines
Celenza, Giuseppe
Amicosante, Gianfranco
Perilli, Mariagrazia
Language :
English
Title :
Kinetic Study of Laboratory Mutants of NDM-1 Metallo-beta-Lactamase and the Importance of an Isoleucine at Position 35.
Publication date :
2016
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology, Washington, United States - District of Columbia
Volume :
60
Issue :
4
Pages :
2366-72
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Copyright (c) 2016, American Society for Microbiology. All Rights Reserved.
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046-5054. http://dx.doi.org/10.1128/AAC.00774-09.
Carattoli A, Fortini D, Galetti R, Garcia-Fernandez A, Nardi G, Orazi D, Capone A, Majolino I, Proia A, Mariani B, Petrosillo N. 2013. Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill 18: pii20633. http://dx.doi.org/10.2807/1560-7917. ES2013.18.46.20633.
Sartor AL, Raza MW, Abbasi SA, Day KM, Perry JD, Paterson DL, Sidjabat HE. 2014. Molecular epidemiology of NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii isolates from Pakistan. Antimicrob Agents Chemother 58:5589-5593. http://dx.doi.org/10.1128/AAC.02425-14.
Olaitan AO, Diene SM, Gupta SK, Adler A, Assous MV, Rolain JM. 2014. Genome analysis of NDM-1 producing Morganella morganii clinical isolate. Expert Rev Anti Infect Ther 12:1297-1305. http://dx.doi.org/10.1586/14787210.2014.944504.
Berrazeg M, Diene S, Medjahed L, Parola P, Drissi M, Raoult D, Rolain J. 2014. New Delhi metallo-β-lactamase around the world: an eReview using Google maps. Euro Surveill 22: pii20809. http://dx.doi.org/10.280 7/1560-7917. ES2014.19.20.20809.
Johnson AP, Woodford N. 2013. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 62:499-513. http://dx.doi.org/10.1099/jmm.0.052555-0.
Kutumbaka KK, Hans S, Mategko J, Nadala C, Buser GL, Cassidy MP, Beldavs ZG, Weissman SJ, Morey KE, Vega R, Samadpour M. 2014. Draft genome sequence of blaNDM-1-positive Escherichia coli O25b-ST131 clone isolated from an environmental sample. Genome Announc 2: pii:e00462-14. http://dx.doi.org/10.1128/genomeA.00462-14.
Bonnin RA, Poirel L, Carattoli A, Nordmann P. 2012. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PloS One 7:e34752. http://dx.doi.org/10.1371/journal.pone.0034752.
Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A. 2013. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 68:34-39. http://dx.doi.org/10.1093/jac/dks357.
Page MI, Badarau A. 2008. The mechanisms of catalysis by metallo betalactamases. Bioinorg Chem Appl 2008:576297. http://dx.doi.org/10.1155/2008/576297.
Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, Fast W. 2011. Characterization of purified New Delhi metallo-β-lactamase-1. Biochemistry 50:10102-10113. http://dx.doi.org/10.1021/bi201449r.
King D, Strynadka N. 2011. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 20:1484-1491. http://dx.doi.org/10.1002/pro.697.
Zhang HO, Hau Q. 2011. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 25:2574-2582. http://dx.doi.org/10.1096/fj.11-184036.
Kim Y, Cunningham MA, Mire J, Tesar C, Sacchettini J, Joachimiak A. 2013. NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism. FASEB J 27:1917-1927. http://dx.doi.org/10.1096/fj.12-224014.
Meini MR, Llarrull LI, Vila AJ. 2014. Evolution of metallo-betalactamases: trends revealed by natural diversity and in vitro evolution. Antibiotics 3:285-316. http://dx.doi.org/10.3390/antibiotics3030285.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. 1989. Site-directed mutagenesis by overlap extension using a polymerase chain reaction. Gene 77:51-59. http://dx.doi.org/10.1016/0378-1119 (89) 90358-2.
Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard.. Seventh edition. Document M7-A7, 26 (2). CLSI, Wayne, PA, USA.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. http://dx.doi.org/10.1038/227680a0.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. http://dx.doi.org/10.1016/0003-2697 (76) 90527-3.
Segel IH. 1976. Biochemical calculations, 2nd ed, p 236-241. John Wiley & Sons, New York, NY.
De Meester F, Joris B, Reckinger G. 1987. Automated analysis of enzyme inactivation phenomena. Application to β-lactamases and DDpeptidases. Biochem Pharmacol 36:2393-2403.
Manavalan P, Johnson WC, Jr. 1987. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167:76-85. http://dx.doi.org/10.1016/0003-2697 (87) 90135-7.
Sreerama N, Woody RW. 2000. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252-260. http://dx.doi.org/10.1006/abio.2000.4880.
Provencher SW, Glöckner J. 1981. Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33-37. http://dx.doi.org/10.1021/bi00504a006.
Van Stokkum IH, Spoelder HJ, Bloemendal M, Van Grondelle R, Groen FC. 1990. Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191:110-118. http://dx.doi.org/10.1016/0003-2697 (90) 90396-Q.
Sreerama N, Woody RW. 1993. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32-44. http://dx.doi.org/10.1006/abio.1993.1079.
Sreerama N, Venyaminov SY, Woody RW. 1999. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci 8:370-380.
Whitmore L, Wallace BA. 2004. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668-W673. http://dx.doi.org/10.1093/nar/gkh371.
Whitmore L, Wallace BA. 2008. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392-400. http://dx.doi.org/10.1002/bip. 20853.
Feng H, Ding J, Zhu D, Liu X, Xu X, Zhang Y, Wang DC, Liu W. 2014. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J Am Chem Soc 136:14694-14697. http://dx.doi.org/10.1021/ja508388e.
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. 2004. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678-683. http://dx.doi.org/10.1002/prot.20251.
Krieger E, Joo K, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K. 2009. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77:114-122. http://dx.doi.org/10.1002/prot.22570.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 1995. A smooth particle mesh Ewald method. J Chem Phys 103:8577. http://dx.doi.org/10.1063/1.470117.
Kim Y, Tesar C, Mire J, Jedrzejczak R, Binkowski A, Babnigg G, Sacchettini J, Joachimiak A. 2011. Structure of apo-and monometalated forms of NDM-1-A highly potent carbapenem-hydrolyzing metallo-β-lactamase. PloS One 6:e24621. http://dx.doi.org/10.1371/journal.pone.0024621.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.