Paper published in a book (Scientific congresses and symposiums)
Deep Background Subtraction with Scene-Specific Convolutional Neural Networks
Braham, Marc; Van Droogenbroeck, Marc
2016In IEEE International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava 23-25 May 2016
Peer reviewed
 

Files


Full Text
Braham2016Deep.pdf
Author postprint (634.72 kB)
Download
Annexes
103_Braham_M.pdf
Publisher postprint (1.83 MB)
Download

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Background subtraction; CDnet; Change detection; Convolutional neural networks; Deep learning; Surveillance; Machine learning
Abstract :
[en] Background subtraction is usually based on low-level or hand-crafted features such as raw color components, gradients, or local binary patterns. As an improvement, we present a background subtraction algorithm based on spatial features learned with convolutional neural networks (ConvNets). Our algorithm uses a background model reduced to a single background image and a scene-specific training dataset to feed ConvNets that prove able to learn how to subtract the background from an input image patch. Experiments led on 2014 ChangeDetection.net dataset show that our ConvNet based algorithm at least reproduces the performance of state-of-the-art methods, and that it even outperforms them significantly when scene-specific knowledge is considered.
Research Center/Unit :
Department of Electrical Engineering and Computer Science (Montefiore Institute), Signal and Image Exploitation (INTELSIG)
Disciplines :
Computer science
Author, co-author :
Braham, Marc ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Van Droogenbroeck, Marc  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
Deep Background Subtraction with Scene-Specific Convolutional Neural Networks
Publication date :
May 2016
Event name :
IEEE International Conference on Systems, Signals and Image Processing (IWSSIP)
Event place :
Bratislava, Slovakia
Event date :
23-25 May 2016
Audience :
International
Main work title :
IEEE International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava 23-25 May 2016
Publisher :
IEEE
Pages :
1-4
Peer reviewed :
Peer reviewed
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 01 April 2016

Statistics


Number of views
1331 (125 by ULiège)
Number of downloads
9213 (72 by ULiège)

Scopus citations®
 
272
Scopus citations®
without self-citations
268
OpenCitations
 
146
OpenAlex citations
 
303

Bibliography


Similar publications



Contact ORBi