Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network
Grelet, Clément; Bastin, Catherine; Gele, Met al.
2016 • In Journal of Dairy Science, 99 (6), p. 4816-4825
Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network.pdf
[en] To manage negative energy balance and ketosis in dairy farms, rapid and cost-effective detection is needed. Among the milk biomarkers that could be useful for this purpose, acetone and β-hydroxybutyrate (BHB) have been proved as molecules of interest regarding ketosis and citrate was recently identified as an early indicator of negative energy balance. Because Fourier transform mid-infrared spectrometry can provide rapid and cost-effective predictions of milk composition, the objective of this study was to evaluate the ability of this technology to predict these biomarkers in milk. Milk samples were collected in commercial and experimental farms in Luxembourg, France, and Germany. Acetone, BHB, and citrate contents were determined by flow injection analysis. Milk mid-infrared spectra were recorded and standardized for all samples. After edits, a total of 548 samples were used in the calibration and validation data sets for acetone, 558 for BHB, and 506 for citrate. Acetone content ranged from 0.020 to 3.355 mmol/L with an average of 0.103 mmol/L; BHB content ranged from 0.045 to 1.596 mmol/L with an average of 0.215 mmol/L; and citrate content ranged from 3.88 to 16.12 mmol/L with an average of 9.04 mmol/L. Acetone and BHB contents were log-transformed and a part of the samples with low values was randomly excluded to approach a normal distribution. The 3 edited data sets were then randomly divided into a calibration data set (3/4 of the samples) and a validation data set (1/4 of the samples). Prediction equations were developed using partial least square regression. The coefficient of determination (R2) of cross-validation was 0.73 for acetone, 0.71 for BHB, and 0.90 for citrate with root mean square error of 0.248, 0.109, and 0.70 mmol/L, respectively. Finally, the external validation was performed and R2 obtained were 0.67 for acetone, 0.63 for BHB, and 0.86 for citrate, with respective root mean square error of validation of 0.196, 0.083, and 0.76 mmol/L. Although the practical usefulness of the equations developed should be further verified with other field data, results from this study demonstrated the potential of Fourier transform mid-infrared spectrometry to predict citrate content with good accuracy and to supply indicative contents of BHB and acetone in milk, thereby providing rapid and cost-effective tools to manage ketosis and negative energy balance in dairy farms.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Grelet, Clément ✱; Centre Wallon des Recherches Agronomiques > Valorsiation des productions
Bastin, Catherine ✱; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Gele, M; Institut de l'Elevage
Davière, J.-B.; Clasel
Johan, M.; Clasel
Werner, A.; Landeskontrollverband
Reding, R.; Convis
Colinet, Frédéric ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Dardenne, P.; Centre Wallon de Recherches Agronomiques > Valorisation des productions
Gengler, Nicolas ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Soyeurt, Hélène ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Statistique, Inform. et Mathém. appliquée à la bioingénierie
Dehareng, Frédéric ; Centre Wallon de Recherches Agronomiques > Valorisation des productions
✱ These authors have contributed equally to this work.
Language :
English
Title :
Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network
Publication date :
June 2016
Journal title :
Journal of Dairy Science
ISSN :
0022-0302
eISSN :
1525-3198
Publisher :
American Dairy Science Association, Champaign, United States - Illinois
F.R.S.-FNRS - Fonds de la Recherche Scientifique SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement FEDER - Fonds Européen de Développement Régional
Baticz O., Tömösközi S., Vida L., Gaál T. Relationship between concentration of citrate and ketone bodies in cow's milk. Acta Vet. Hung. 2002, 50:253-261. http://dx.doi.org/10.1556/AVet.50.2002.3.1.
Baugnies, S. 2015. Mise au point d'un indicateur de défaut énergétique des vaches à partir de nouvelles molécules disponibles via l'analyse spectrale du Contrôle Laitier dans le cadre du projet européen OptiMIR. Ms Thesis. Haute Ecole Condorcet, Prov. Hainaut, Belgium.
Bjerre-Harpøth V., Friggens N.C., Thorup V.M., Larsen T., Damgaard B.M., Ingvartsen K.L., Moyes K.M. Metabolic and production profiles of dairy cows in response to decreased nutrient density to increase physiological imbalance at different stages of lactation. J. Dairy Sci. 2012, 95:2362-2380. http://dx.doi.org/10.3168/jds.2011-4419.
Bonfatti V., Di Martino G., Carnier P. Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows. J. Dairy Sci. 2011, 94:5776-5785. http://dx.doi.org/10.3168/jds.2011-4401.
Butler W.R. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci. 2003, 83:211-218. http://dx.doi.org/10.1016/S0301-6226(03)00112-X.
Collard B.L., Boettcher P.J., Dekkers J.C., Petitclerc D., Schaeffer L.R. Relationships between energy balance and health traits of dairy cattle in early lactation. J. Dairy Sci. 2000, 83:2683-2690. http://dx.doi.org/10.3168/jds.S0022-0302(00)75162-9.
Dardenne, P., J. A. Fernandez Pierna, O. Abbas, V. Baeten, and B. Lecler. 2015, Untargeted multivariate characterization of contaminants in powdered milk. Proc. Final Optimir Scientific and Expert Meeting: From Milk Analysis to Advisory Tools. Namur (Belgium), 16-17 April 2015, BASE, vol. 19(2).
Davies A., Fearn T. Back to basics: Calibration statistics. Spectroscopy Europe 2006, 18:31-32.
De Marchi M., Toffanin V., Cassandro M., Penasa M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 2014, 97:1171-1186. http://dx.doi.org/10.3168/jds.2013-6799.
de Roos A.P.W., van den Bijgaart H.J.C.M., Hørlyk J., de Jong G. Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry. J. Dairy Sci. 2007, 90:1761-1766. http://dx.doi.org/10.3168/jds.2006-203.
Denis-Robichaud J., Dubuc J., Lefebvre D., DesCôteaux L. Accuracy of milk ketone bodies from flow-injection analysis for the diagnosis of hyperketonemia in dairy cows. J. Dairy Sci. 2014, 97:3364-3370. http://dx.doi.org/10.3168/jds.2013-6744.
Duffield T. Subclinical ketosis in lactating dairy cattle. Vet. Clin. North Am. Food Anim. Pract. 2000, 16:231-253.
Enjalbert F., Nicot M.C., Bayourthe C., Moncoulon R. Ketone bodies in milk and blood of dairy cows: Relationship between concentrations and utilization for detection of subclinical ketosis. J. Dairy Sci. 2001, 84:583-589. http://dx.doi.org/10.3168/jds.S0022-0302(01)74511-0.
Gengler N., Soyeurt H., Dehareng F., Bastin C., Colinet F.G., Hammami H., Dardenne P. Overview of possibilities and challenges of the use of infrared spectrometry in cattle breeding. Proc. EAAP 66th Annual Meeting 2015, 353. Wageningen Academic Publishers, Wageningen, the Netherlands, .
Gengler N., Soyeurt H., Dehareng F., Bastin C., Colinet F.G., Hammami H., Vanrobays M.L., Lainé A., Vanderick S., Grelet C., Vanlierde A., Froidmont E., Dardenne P. Capitalizing on fine milk composition for breeding and management of dairy cows. J. Dairy Sci. 2016, 99:1-9. http://dx.doi.org/10.3168/jds.2015-10140.
Grelet C., Fernández Pierna J.A., Dardenne P., Baeten V., Dehareng F. Standardization of milk mid-infrared spectra from a European dairy network. J. Dairy Sci. 2015, 98:2150-2160. http://dx.doi.org/10.3168/jds.2014-8764.
Hansen P.W. Screening of dairy cows for ketosis by use of infrared spectroscopy and multivariate calibration. J. Dairy Sci. 1999, 82:2005-2010. http://dx.doi.org/10.3168/jds.S0022-0302(99)75437-8.
Hanuš O., Genčurová V., Zhang Y., Hering P., Kopecký J., Jedelská R., Dolínková A., Motyčka Z. Milk acetone determination by the photometrical method after microdiffusion and via FT infra-red spectroscopy. J. Agrobiol. 2011, 28:33-48.
Hanuš O., Roubal P., Říha J., Klimešová M.Y., Samková E., Jedelská R., Kopecký J. Development in indirect infra-red determination of milk acetone. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62:919-927.
Heuer C., Luinge H.J., Lutz E.T., Schukken Y.H., van der Maas J.H., Wilmink H., Noordhuizen J.P. Determination of acetone in cow milk by Fourier transform infrared spectroscopy for the detection of subclinical ketosis. J. Dairy Sci. 2001, 84:575-582. http://dx.doi.org/10.3168/jds.S0022-0302(01)74510-9.
Lainé A., Bel Mabrouk H., Dale L.M., Bastin C., Gengler N. How to use mid-infrared spectral information from milk recording system to detect the pregnancy status of dairy cows. Commun. Agric. Appl. Biol. Sci. 2014, 79:33-38.
McParland S., Banos G., Wall E., Coffey M.P., Soyeurt H., Veerkamp R.F., Berry D.P. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. Dairy Sci. 2011, 94:3651-3661. http://dx.doi.org/10.3168/jds.2010-3965.
McParland S., Lewis E., Kennedy E., Moore S.G., McCarthy B., O'Donovan M., Butler S.T., Pryce J.E., Berry D.P. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. J. Dairy Sci. 2014, 97:5863-5871. http://dx.doi.org/10.3168/jds.2014-8214.
Nicolaï B.M., Beullensa K., Bobelyna E., Peirs A., Saeys W., Theronb K.I., Lammertyn J. 2007, Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46:99-118.
Pezon J. La cétose subclinique détectée par le spectre MIR. L'éleveur Laitier 2015, 234:48-51.
Rousseeuw P.J., Debruyne M., Engelen S., Hubert M. Robustness and outlier detection in chemometrics. Crit. Rev. Anal. Chem. 2006, 36:221-242.
Rutten M.J.M., Bovenhuis H., Hettinga K.A., van Valenberg H.J.F., van Arendonk J.A.M. Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. J. Dairy Sci. 2009, 92:6202-6209. http://dx.doi.org/10.3168/jds.2009-2456.
Soyeurt H., Bastin C., Colinet F.G., Arnould V.M.-R., Berry D.P., Wall E., Dehareng F., Nguyen H.N., Dardenne P., Schefers J., Vandenplas J., Weigel K., Coffey M., Théron L., Detilleux J., Reding E., Gengler N., McParland S. Mid-infrared prediction of lactoferrin content in bovine milk: potential indicator of mastitis. Animal 2012, 6:1830-1838. http://dx.doi.org/10.1017/S1751731112000791.
Soyeurt H., Bruwier D., Romnee J.-M., Gengler N., Bertozzi C., Veselko D., Dardenne P. Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2009, 92:2444-2454. http://dx.doi.org/10.3168/jds.2008-1734.
Soyeurt H., Dehareng F., Gengler N., McParland S., Wall E., Berry D.P., Coffey M., Dardenne P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 2011, 94:1657-1667. http://dx.doi.org/10.3168/jds.2010-3408.
Suthar V.S., Canelas-Raposo J., Deniz A., Heuwieser W. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 2013, 96:2925-2938. http://dx.doi.org/10.3168/jds.2012-6035.
van der Drift S.G., van Hulzen K.J.E., Teweldemedhn T.G., Jorritsma R., Nielen M., Heuven H.C.M. Genetic and nongenetic variation in plasma and milk β-hydroxybutyrate and milk acetone concentrations of early-lactation dairy cows. J. Dairy Sci. 2012, 95:6781-6787. http://dx.doi.org/10.3168/jds.2012-5640.
van Knegsel A.T., van der Drift S.G.A., Horneman M., de Roos A.P.W., Kemp B., Graat E.A.M. Short communication: Ketone body concentration in milk determined by Fourier transform infrared spectroscopy: Value for the detection of hyperketonemia in dairy cows. J. Dairy Sci. 2010, 93:3065-3069. http://dx.doi.org/10.3168/jds.2009-2847.
Vanlierde A., Vanrobays M.-L., Dehareng F., Froidmont E., Soyeurt H., McParland S., Lewis E., Deighton M.H., Grandl F., Kreuzer M., Gredler B., Dardenne P., Gengler N. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 2015, 98:5740-5747. http://dx.doi.org/10.3168/jds.2014-8436.
Williams P.C. Variables affecting near-infrared reflectance spectroscopic analysis. Near Infrared Technology in the Agriculture and Food Industries 2004, 145-169. Am. Cereal Assoc. Cereal Chem., St. Paul, MN. 2nd. P. Williams, K. Norris (Eds.).
Williams P.C., Sobering D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1993, 1:25-32.