[en] This work is an overview of available constitutive laws used in finite element codes to model elastoplastic metal anisotropy behaviour at a macroscopic level. It focuses on models with strong links with the phenomena occurring at microscopic level. Starting from macroscopic well-known models such as Hill or Barlat’s laws, the limits of these macroscopic phenomenological yield loci are defined, which helps to understand the current trends to develop micro-macro laws. The characteristics of micro-macro laws, where physical behaviour at the level of grains and crystals are taken into account to provide an average macroscopic answer are described. Some basic knowledge about crystal plasticity models is given for non-specialists, so every one can understand the microscopic models used to reach macroscopic values. The assumptions defining
the transition between the microscopic and macroscopic scales are summarized: full constraint or relaxed Taylor’s model, self-consistent approach, homogenisation technique. Then, the two generic families of micromacro models are presented: macroscopic laws without yield locus where computations on discrete set of crystals provide the macroscopic material behaviour and macroscopic laws with macroscopic yield locus defined by microscopic computations. The models proposed by Anand, Dawson, Miehe, Geers, Kalidindi or Nakamachi belong to the first family when proposals by Montheillet, Lequeu, Darrieulat, Arminjon, Van Houtte, Habraken enter the second family. The characteristics of all these models are presented and commented. This paper enhances interests of each model and suggests possible future developments.
Disciplines :
Materials science & engineering
Author, co-author :
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A. Acharya and A. J. Beaudoin (2000). Grain-size effect in viscoplastic polycrystals at moderate strains. J. Mech. Phys. Solids, 48(10), 2213-2229.
E. Aernoudt, J. Gil-Sevillano and P. Van Houtte (1987). Constitutive Relations and Their Physical Basis, S.I. Andersen et al. (Eds.), RisoøNational Laboratory, Roskilde, Denmark, 1-38.
E. C. Aifantis (1987). The physics of Plastic Deformations. Int. J. Plasticity, 3, 211-247.
R. J. Asaro (1983). Micromechanics of crystals and polycrystals, Advances in Applied Mechanics, 23, 1-115.
R. J. Asaro and A. Needleman (1985). Texture development and strain hardening in rate dependent polycrystals. Acta Metallurgica, 33, 923-953.
L. Anand and M. Kothari (1996). A Computational Procedure for Rate-Independent crystal plasticity. J. Mech. Phys. Solids, 44(4), 525-558.
L. Anand, S. Balasubramanian and M. Kothari (1997). Constitutive Modeling of Polycrystalline Metals at Large Strains: Application to Deformation Processing, Large plastic deformation of crystalline aggregates. International Centre for Mechanical Sciences, Courses and Lectures n° 376, Springer Verlag, 109-172.
A. Andersson, C. A. Ohlsson, K. Mattiasson and B. Persson (1999). Implementation and Evaluation of the Karafillis-Boyce Material Model for Anisotropic Metal Sheets. Numisheet'99, 13-17 September 1999, 1, Besançon, France, 13-17 September 1999, JC Gélin, P. Picart (Eds.), Université de Franche-Comté, 115-121.
M. Arminjon (1988). Lois de comportement homogénéisées pour la plasticité des polycristaux. Mém. d'habilitation, Univ. Paris-Nord, Villetaneuse.
M. Arminjon and B. Bacroix (1991). On plastic potentials for anisotropic metals and their derivation from the texture function. Acta Mechanica, 88, 219-243.
M. Arminjon, B. Bacroix, D. Imbault and J. K. Raphanel (1994). A fourth-order plastic potential for anisotropic metals and its analytical calculation from texture function. Acta Mechanica, 107, (33).
I. Aukrust, S. Tjotta, H. E. Vatne and P. Van Houtte (1997). Coupled FEM and texture modelling of plane strain extrusion of an Aluminium alloy. Int. J. of Plasticity, 13(1,2).
D. Banabic (2000). In: Formability of Metallic Materials. D. Banabic (Ed.), Springer Verlag, Berlin, p. 119-172.
D. Banabic, D. S. Comsa and T. Balan (2000). Proc. 7th Conf. TPR 2000, Cluj Napoca, 215-224.
A. Barata da Rocha (1985). Mise en forme des tôles minces, instabilité plastique, anisotropie et endommagement. These de Doctorat, Institut National Polytechnique de Grenoble.
F. Barbe, G. Cailletaud, S. Forest and S. Quilici (1999). Large Scale Parallel Computation applied to Polycrystalline Aggregates, Book of Abstracts 5th U.S. National Congress on Computational Mechanics, edited by A. Carosio, P. Smolarkiewicz, K. Willam and J. Yang; in University of Colorado Printing Services
F. Barlat (1987). Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metal. Materials Science and Engineering, 91(55).
F. Barlat and J. Lian (1989). Plastic behaviour and stretchability of sheet metals. Part 1: A yield function for orthotropic sheets under plane stress conditions. Int. J. of Plasticity, 5, 51.
F. Barlat, D. J. Lege and J. C. Brem (1991). A six-component yield function for anisotropic materials. Int. J. of Plasticity, 7, 693.
F. Barlat, R. C. Becker, J. C. Brem, D. J. Lege, D. J. Murtha, Y. Hayashida, Y. Maeda, M. Yanagawa, K. Chung, K. Matsui and S. Hattori (1997). Yielding description for solution strengthened aluminum alloys, Int. J. of Plasticity, 13, 385-401.
F. Barlat, D. Bauabic and O. Cazacu (2002). Anisotropy in sheet metals Numisheet 2002, Numerical Simulation of 3D Sheet Forming Processes. Dong-Yol Yang, Soo Ik Oh, Hoon Huh, Yong Hwan Kim (Eds.), Design innovation Through Virtual Manufacturing, 515-524
A. J. Beaudoin, P. R. Dawson, K. K. Mathur, U. F. Kocks and D. A. Korzekwa (1994). Application of polycrystal plasticity to sheet forming. Comp. Methods Appl. Mech. Eng., 117, 49-70.
A. J. Beaudoin, P. R. Dawson, K. K. Mathur, U. F. Kocks, (1995). A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural link. Int. J. of Plasticity, 11(5), 501-521.
Becker (1990). An analysis of shear localization during bending of a polycrystalline sheet. Microstructural Evolution in Metal Processing, 46.
H. Berg, P. Hora and J. Reissner (1998). Simulation of sheet metal forming processes using different anisotropic constitutive models, Simulation of materials processing: theory, methods and applications, Huetink and Baaijens (Eds.), Balkema.
Y. Bergström (1969). A dislocation model for the stress strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations. Mat. Sci. Eng., 5, 179-192.
M. Berveiller and A. Zaoui (1979). An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids, 26, 325-344.
A. Bertram, T. Böhlke and M. Kraska (1997). Numerical simulation of texture development of polycrystals undergoing large plastic deformations. Computational Plasticity. Fundamentals and Applications, D. R. J. Owen, E. Onate and E. Hinton (Eds.).
N. Boudeau and J. C. Gelin (1996). Post-processing of finite element results and prediction of the localized necking in sheet metal forming. J. of Materials Processing Technology, 60, 325-330.
S. Bouvier, C. Teodosiu, H. Haddadi and V. Tabacaru (2002). Anisotropic Work-Hardening Behaviour of Structural Steels and Aluminium Alloys at Large Strains. Proceedings of the 6th European Mechanics of Materials Conference, Non Linear Mechanics of Anisotropic Materials, Liege, Cescotto (Ed.).
P. W. Bridgman (1923). The compressibility of thirty metal as a function of pressure and temperature. Proc. Am. Acad. Arts Sci, 58, 165.
P. W. Bridgman (1952). Studies in large plastic flow and fracture. Metallurgy and Metallurgical Engineering Series, New-York, McGraw-Hill.
H. J. Bunge (1982). Texture Analysis in Materials Science, Butterworths Publishers, London.
G. R. Canova, U. F. Kocks and C. N. Tomé (1985). The yield surface of textured polycrystals. Mech. Phys. Solids, 33, 4, 371-397.
G. R. Canova and R. Lebensohn (1995). Micro-macro modelling, Computer Simulation in Materials Science, NATO ASI, He d'Oleron, France, June 6-16.
O. Cazacu and F. Barlat (2001). Generalization of Drucker's yield criterion to orthotropy Mathematics and Mechanics of Solids, 6, 613-630.
F. Cayssials (1998). A new method for predicting FLC, IDDRG. Conference Geneval, Brussel 6/98.
F. Cayssials (1999). The new version of the Sollac model, Working Group of the IDDRG 99, Birmingham.
Y. Chastel, R. Loge, M. Perrin, V. Lamy and S. Zaefferer (1998). Microscopic and macroscopic length scales in hot extrusion of Zircaloy 4. First ESAFORM Conference on Material Forming, Sophia-Antipolis, France.
A. Clément (1982). Prediction of Deformation Texture Using a Physical Principle of Conservation. Mater. Sci. Eng., 55, 203-210.
M. Darrieulat and D. Piot (1996). A method of generating analytical yield surfaces of crystalline materials. Int. J. Plasticity, 12(10), 1221-1240.
M. Darrieulat and F. Montheillet (2003). A texture based continuum approach for predicting the plastic behaviour of rolled sheet. Int. Jour. of Plasticity, 19(4), 517-546.
P. R. Dawson, A. J. Beaudoin and K. K. Mathur (1992). Simulating deformation-induced texture in metal forming. Num. Meth. in Ind. Form. Proc..
P. R. Dawson and A. Kumar (1997). Deformation Process Simulations Using Polycrystal Plasticity. Large plastic deformation of crystalline aggregates, International Centre for Mechanical Sciences, Courses and Lectures n° 376, Springer Verlag, 247.
D. C. Drucker (1949). J. Appl Mech, 16, 349-357.
D. C. Drucker (1951). A more fundamental approach to plastic stress-strain relations. Proc. First US Nat. Congr. Applied Mechanics, ASME, New-York, 487-491.
L. Duchêne (2000). Implementation of a Yield Locus Interpolation Method in the Finite Element Code Lagamine, DEA Graduation Work, Université de Liege M & S Department, Belgium.
J. D. Eshelby (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London, A241, 376-396.
Ewing, J.A. and W. Rosenhain (1900). The crystalline structure of metals; Phil. Trans. R. Soc., London, 193, 353.
F. Feyel and J. L. Chaboche (2000). Mutiscale non linear FE analysis of composite structures: damage and fiber size effets. Euromech 417, 2-4 October 2000, University of Technology of Troyes, France.
P. S. Follansbee and U. F. Kocks (1988). A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall., 36(1), 81-93.
P. Franciosi (1988). On flow and a work hardening expression correlation in metallic single crystal plasticity. Revue Phys. Appl. 23, 383-394.
J. Frenckel (1926). Zur Theorie der Plastizitätsgrenze und der Gestigheit kristallinischer Körper. Z. Phys., 37, 572-609.
K. Garikipat and J. R. T. Hughes (2000). A Variational Multiscale Approach to Strain Localization, Formulation for Multidimensional Problems. Computer Methods in Applied Mechanics and Engineering, 188, (2000), 39-60
M. G. D. Geers, V. Kouznetsova and W. A. M. Brekelmans (2000). Constitutive approaches for the multi-level analysis of the mechanics of microstructures. 5th National Congress on Theoretical and Applied Mechanics, Louvain-La-Neuve, May 23-24, 2000.
P. Gilormini, Y. Liy and P. Ponte Castaneda (2002). Application of the variational self-consistent model to the deformation textures of titanium. Int. Journal of Forming Processes, 5(2,3,4), 327-336.
A. L. Gurson (1977). Continuum theory of ductile rupture by void nucleation and growth. J. Engng. Materials Technology, 99, 2-15.
A. M. Habraken and S. Cescotto (1994). Contact between deformable solids, the fully coupled approach. Mathematical and Computer Modelling, 28(4-8), 153-169.
A. M. Habraken (2001). Contributions to Constitutive laws of metals: micro-macro and damage models, These d'Agrégé de l'Enseignement Supérieur, Université de Liege, Département M & S.
A. M. Habraken and L. Duchêne (in press). Micro-Macro Simulations of Polycrystalline Metals. Int. Jour, of Plasticity, (electronic version available since March 2004).
A. Hacquin, P. Montmitonnet and J. P. Guillerault (1995). Coupling of roll and strip deformation in three-dimensional simulation of hot rolling. Simulation of Materials Processing: Theory, Methods and Applications, 921.
I. Hage Chehade (1990). Simulation de l'emboutissage des tôles anisotropes par éléments finis avec prédiction des risques de striction, These de doctorat, Institut National des Sciences Appliquées de Lyon.
K. Hayakawa and S. Murakami (1998). Space of damage conjugate force and damage potential of elastic-plastic-damage materials, Damage Mechanics in Engineering Materials, Voyiadjis, G.Z., Ju, J.W., Chaboche J.L. Eds, 27-44.
S. S. Hecker (1976). Experimental studies of yield phenomena in biaxially loaded metals, J. A. Strick-Lin, K. J. Saczalski (Eds.), Constitutive equations in viscoplasticity: computational and engineering aspects, ASME, New-York, 1-33.
R. Hill (1948). A theory of the yielding and plastic flow of anisotropic materials. Proc. Royal Soc. London, A193, 281-297.
R. Hill (1965). Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids, 13, 89-101.
R. Hill (1979). theoretical plasticity of textured aggregates. Math. Proc. Cambridge Philosophical Soc., 85, 179-191.
R. Hill (1987). Constitutive dual potentials in classical plasticity. J. Mech. Phys. Solids, 35, 23-33.
R. Hill (1990). Constitutive Modelling of Orthotropic Plasticity in Sheet Metals. J. Mech. Phys. Solids, 38(3), 405-417.
R. Hill (1993). A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci., 35(1), 19-25.
J. R. Hirsch (1990). Correlation of deformation texture and microstructure. Materials Science and Technology, 6, 1048.
S. Hiwatashi, A. Van Bael, P. Van Houtte and C. Teodosiu (1997). Modelling of plastic anisotropy based on texture and dislocation structure. Computational materials science, 9, 274-284.
E. Hoferlin, A. Van Bael, S. Hiwatashi and P. Van Houtte (1998). Influence of texture and microstructure on the prediction of forming limit diagram. 19th RISO Symposium on Materials Science, 7-11 Sept. 1998.
E. Hoferlin, A. Van Bael and P. Van Houtte (1999a). Comparison between stress-based and strain-rate based elasto-plastic finite element models for anisotropic metals. Plasticity'99, Constitutive and damage modelling of inelastic deformation and phase transformation, A. S. Khan (Ed.), Neat Press Pulton, Maryland.
E. Hoferlin, A. Van Bael and P. Van Houtte, C. Teodosiu (1999b). An accurate model of texture and strain-path induced anisotropy. Numisheet'99, Numerical Simulation of 3D Sheet Forming Processes, J. C. Gelin, P. Picart (Eds.), Université de Franche Comté, Besançon, France.
E. Hoferlin (2001). Incorporation of an accurate model of texture and strain-path induced anisotropy in simulations of sheet metal forming. Ph. D. thesis Katholieke Universiteit Leuven.
P. Hora, L. Tong and J. Reissner (1996). A prediction method for ductile sheet metal failure in f.e. simulation. Proceedings of the 3rd Int. Conf. Numisheet' 96 Numerical Simulation of 3-D Sheet Metal Forming Processes - Verification of Simulations with Experiments, Lee, Kinzel, Wagoner (Eds.), Ohio State University.
W. F. Hosford (1972). A generalized Isotropic yield criterion. J. Appl. Mech. Trans. ASME, 39, 607-609.
D. Imbault and M. Arminjon (1993). Theoretical and numerical study of the initial and induced plastic anisotropy of steel sheets, using a texture-based methodology, Final report of contract Univ. J. Fourier n° 17191401, Laboratoire 3S, Université Joseph Fourier, France.
J. Jensen and D. N. Hansen (1987). Relations Between Texture and Flow Stress in Commercially Pure Aluminium, Constitutive Relations and their Physical Basis. 8th Riso Int. Symp. on Metallurgy and Mat. Sci., S. I. Andersen et al. (Eds.), Riso Nat. Lab., Roskilde, 353-360.
S. R. Kalidindi, C. A. Bronkhorst and L. Anand (1992). Crystallographic texture evolution during bulk deformation processing of FCC metals. J. Mech. Phys. Solids, 40, 537-579.
S. R. Kalidindi and L. Anand (1994). Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J. Mech. Phys. Solids, 42(3), 459-490.
J. S. Kauend, U. F. Kocks, A. D. Rollett and H. R. Wenk (1991). popLA - an integrated software system for texture analysis. Text. microstruct., 14-18, 1203-1208.
A. P. Karafillis and M. C. Boyce (1993). A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids, 41(12), 1859-1886.
A. S. Khan and S.Huang (1995). Continuum theory of plasticity, Wiley & Sons.
A. S. Khan and P. Cheng (1996). An anisotropic elastic-plastic constitutive model for single and polycrystalline metals. I - theoretical developments. Int. J. Plasticity, 12(2), 147-162.
A. S. Khan and P. Cheng (1998). An anisotropic elastic-plastic constitutive model for single and polycrystalline metals. II - experiments and predictions concerning thin-walled tubular IFHC copper. Int. J. Plasticity, 1(3), 209.
S. Kobayashi, R. M. Caddell and W. F. Hosford (1985). Examination of Hill's latest yield criterion using experimental data for various anisotropic sheet metals. Int. J. of Mech. Sci., 27, 509.
E. Kröner (1961). Zur plastischen Verformung des Vielkristalls. Acta Metall., 9, 155-161.
A. Kumar and P. R. Dawson (1995a). The simulation of texture evolution during bulk deformation processes using finite elements over orientation space. Simulation of Materials Processing: Theory, Methods and Applications, Shen & Dawson, Balkema.
A. Kumar and P. R. Dawson (1995b). Polycrystal plasticity modeling of bulk forming with finite elements over orientation space. Comp. Mech., 17, 10-25.
A. Kumar and P. R. Dawson (1996). The simulation of texture evolution with finite elements over orientation space. I. Development, II. Application to planar crystals. Comp. Methods Appl. Mech. Eng., 130, 227-261.
T. Kuwabara and A. Van Bael (1999). Measurement and Analysis of Yield Locus of Sheet al.uminium Alloy 6XXX. Numisheet'99, 13-17 September 1999, 1, Besançon, France, 13-17 September 1999, J.C. Gélin and P. Picart (Eds.), Université de Franche-ComtÉ, 85-90.
R. A. Lebensohn and C. N. Tome (1993). A self-consistant anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to Zirconium alloys. Acta Metall. Mater., 41, 2611-2624.
Ph. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix and J. J. Jonas (1987a). Yield surfaces for textured polycrystals. I. Crystallographic Approach. Acta Metall., 35(2), 439-451.
Ph. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix and J. J. Jonas (1987b). Yield surfaces for textured polycrystals. II. Analytical Approach. Acta Metall., 35(5), 1159-1174.
S. Li, E. Hoferlin, A. Van Bael, P. Van Houtte and C. Teodosiu (2003). Finite element modeling of plastic anisotropy induced by texture and strain-path change. Int. J. of Plasticity. 19 (5), 647-674.
A. B. Lopes et al. (2003). Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. Int. J. Plasticity, 19 (1), 1-22.
A. MagnÉe (1994). Physique du solide, notes de cours de la FacultÉ des Sciences AppliquÉes, UniversitÉ de Liege.
Mahmudi (1995) Yield loci of anisotropic aluminium sheets. Int. J. of Mech. Sci., 37, 919.
R. Massen and A. Zaoui (1999). Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials. J. of Mechanics and Physics of Solids, 47, 1543-1568.
K. K. Mathur and P. R. Dawson (1989). On modeling the development crystallographic texture in bulk forming processes. Int. J. Plasticity, 5, 67-94.
A. Mendelson (1968). Plasticity: Theory and Application, MacMillan, New-York, 87.
C. Miehe, J. Schröder and J. Schotte (1999). Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. Computer methods in applied mechanics and engineering, 171, 387-418.
M. P. Miller and D. L. Me Dowell (1996). Modeling large strain multiaxial effects in FCC polycrystals. Int. J. of Plasticity, 12(7), 875-902.
A. Molinari (1997). Deformation Process Simulations Using Polycrystal Plasticity. Large plastic deformation of crystalline aggregates, International Centre for Mechanical Sciences, Courses and Lectures n° 376, Springer Verlag, 173-246.
G. Monfort, J. P. Adriaens, J. Defourny, P. Jodogne, M. Brunet and J. M. Detraux (1991). FEM simulation of non-axisymmetric press formed parts using anisotropic constitutive laws for steel. IDDRG, Pisa.
G. Monfort and J. Defourny (1993). A new orthotropic plasticity model for complex sheet forming. Centre for Theoretical Physics - External activities. (ICTP-OEA), Conference on interface between physics and mathematics. Hangzhou, China.
G. Monfort and J. Defourny (1994). The 3G plasticity model, Metallurgical bases - Mechanical evaluation - Application to finite element simulation of steel forming, 14 septembre, Centre de recherches métallurgiques, Liege.
F. Montheillet, P. Gilormini and J. J. Jonas (1985). Relation between axial stresses and texture development during torsion testing: a simplified theory. Acta Metall., 33(4), 705-717.
S. Munhoven, A. M. Habraken, J. Winters, R. Schouwenaars and P. Van Houtte (1995a). Application of an anisotropic yield locus based on texture to a deep drawing simulation, NUMIFORM 95, Simulation of Materials Processing: Theory, Methods and Applications, Shen & Dawson, Balkema, 767-772.
S. Munhoven, J. Winters and A. M. Habraken (1995b). Finitie element applications of an anisotropic yield locus based on crystallographic texture. Computer simulations in materials science Nano/Meso/Macroscopic Space and teine scales. Nato Advenced study Institute, He d'Oleron France 6-16 juin, Université de Liege, Département MSM.
S. Munhoven, A. M. Habraken and J. P. Radu (1997). Anisotropic plasticity based on crystallographic texture. 4eme Congres de Mécanique théorique et appliquée, Leuven.
E. Nakamachi and X. H. Dong (1997). Study of Texture Effect on Sheet Failure in a Limit Dome Height Test by Using Elastic/Crystalline Viscoplastic Finite Element Analysis. J. Appl. Mech. Trans. ASME(E), 64, 519-524.
E. Nakamachi, E. Oñate, P. Bergan, M. H. Boduroglu and C. R. Kaykayoglu (1999a). The study of crystalline morphology effects on sheet metal forming. IA CM Expressions, 7, Spring-Summer 1999.
E. Nakamachi, C. L. Xie, K. Hiraiwa and M. Harimoto (1999b). Development of elastic/crystalline viscoplastic finite element analysis code based on the meso-phenomenological material modeling. Numisheet'99, 1, Besançon, France, J.C. Gélin and P. Picart (Eds.), Université de Franche-Comté 79-84.
K. Narasimhan and R. H. Wagoner (1991). Finite element modeling simulation of in-plane forming limit diagrams of sheets containing finite defects. Metallurgical Transaction A, 22A, 1991, 2655.
K. W. Neale (1993). Use of Crystal Plasticity in Metal Forming Simulations, Int. J. Mech. Sci., 35(12), 1053-1063.
S. Nikolov and I. Doghri (2000). A micro-macro constitutive model for the small deformation behavior of polyethylene. Polymer, 41, 1883-1891.
J. Ning and E. C. Aifantis (1996). Anisotropic yield and plastic flow of polycrystalline solids. Int. J. of Plasticity, 12(10), 1221-1240.
Numisheet (1993). Proceedings of the 2nd Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Isehara, Japan, August 31-September 2.
Numisheet (1996). Proceedings of the 3nd Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Forming Processes, G. L. Kinzel and R. H. Wagoner (Eds.), Ohio State University, Columbus.
Numisheet (1999). Proceedings of the 4th Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Benchmarks, Besançon, France, 13-17 September 1999, 2, J. C. Gélin and P. Picart (Eds.), Université de Franche-Comté.
B. Peeters, E. Hoferlin, P. Van Houtte and E. Aernoudt (2001). Assessment of crystal plasticity based calculation of the lattice spin of polycrystalline metals for FE implementation. Int. J. Plasticity, 17, 819-836.
B. Peeters (2002). Multiscale Modelling of the induced plastic anisotropy in IF steel during sheet forming. Ph.D. thesis, Katholieke Universiteit Leuven, MTM.
A. Phillips (1986). A review of quasi-static experimental plasticity, and viscoplasticity. Int J; of Plasticity, 2, 315.
A. Phillips and C. W. Lee (1979). Yield surfaces and loading surfaces. Experiments and recommendations. Int. J. Solids & Structures, 15, 715-729.
H. H. Pijlman, J. Brinkman, J. Huetink and H. Vegter (1999). The Vegter Yield Criterion Based on Multi-Axial Measurements. Numisheet'99, 1, Besançon, France, J. C. Gélin and P. Picart (Eds.), Université de Franche-Comté, 109-114.
P. Ponte Castaneda (1991). The effective mechanical properties of nonlinear Isotropic composites. Journal of the Mechanics and Physics of Solids, 39, 45-71.
J. Ph. Ponthot (1995). Traitement unifié de la mécanique des milieux continus solides en grandes déformations par la méthode des éléments finis. Ph.D. thesis, LTAS, Université de Liege.
V. C. Prantil, P. R. Dawson and Y. B. Chastel (1995). Comparison of equilibrium-based plasticity models and a Taylor-like hybrid formulation for deformations of constrained crystal systems. Modelling Simul. Mater. Sci. Eng., 3, 215-234.
G. Sachs (1928). Zur Ableitung einer Fliessbedingung. Z. Verein Deutscher Ing., 72, 734-736.
A. Schmitz (1995). Development and experimental validation of a coupled thermal, mechanical and textural model for ferritic hot-rolling of steel. Faculty of Engineering of the Catholic University of Leuven.
S. E. Schoenfeld and R. J. Asaro (1996). Through thickness texture gradients in rolled polycrystalline alloys. Pergamon, Int. J. Mech. Sci., 38(6), 661-683.
G. Sevilla P. Van Houtte and E. Aernoudt (1980). Large strain work hardening and textures. Progress in Materials Science, 25, 111.
R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer (1998). Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comp. Meth. Appl. Mech. Eng., 155, 181-192.
G. I. Taylor (1938). Plastic strains in metals. J. Inst. Metals, 62, 307-324.
C. Teodosiu, J. L. Raphanel and L. Tabourot (1992). Finite Element Simulation of the Large Elastoplastic Deformation of Multicrystals, Large Plastic Deformations. Fundamentals and Applications to Metal Forming. Proc. MECAMAT'91, C. Teodosiu, F. Sidoroff and J. L. Raphanel (Eds.), Balkema, Rotterdam, 153-168.
C. Teodosiu (1997). Dislocation modelling of crystal plasticity, Large plastic deformation of crystalline aggregates. International Centre for Mechanical Sciences, Courses and Lectures n° 376, Springer Verlag, 21-80.
C. Teodosiu and Z. Hu (1998). Microstructure in the continuum modelling of plastic anisotropy. Proceedings of the 19th Riso Int. Symp. on Materials Science: Modelling of Structure and Mechanics of Materials from Microscale to Products, J. V. Carstensen and T. Leffers (Eds.).
L. S. Tóth and P. Van Houtte (1992). Discretization techniques for orientation distribution functions. Textures and Microstructures, 19, 229-244.
Z. Tourki, A. Zeghloul and G. Perron (1996). Sheet metal forming simulations using a new model for orthotropic plasticity. Computational Materials Science, 5, 255-262.
H. Tresca (1864). On the yield of solids at high temperature (in French). Comptes Rendus Academie des Sciences, 59, Paris, 754.
A. Van Bael (1994). Anisotropic yield loci derived from crystallographic data and their application in finite element simulations of plastic forming processes, proefschrift voorgedragen tot het behalen van het doctoraat in de toegepaste wetenschappen, Katholieke Universiteit Leuven.
A. Van Bael, J. Winters and P. Van Houtte (1996). A semi-analytical approach for incorporating crystallographic data into elasto-plastic finite element formulations, Textures of Materials. Proceedings of the 11th Int. Conf. on Textures of Materials, 1, ICOTOM-11, Sept. 16-20, Z. Liang, L. Zuo and Y. Chu (Eds.).
A. Van Bael and P. Van Houtte (2002). Convex Fourth and Sixth-Order Plastic Potentials derived from Crystallographic Texture, Proc. of the 6th European Mechanics of Materials Conference (EMMC6), Liege Cescotto editor.
P. Van Houtte (1988). A comprehensive mathematical formulation of an extended TaylorBishop-Hill model featuring relaxed constraints, the Renouard-Wintenberger theory and a strain rate sensitivity model. Textures and Microstructures, 8-9, 313-350.
P. Van Houtte, K. Mols, A. Van Bael and E. Aernoudt (1989). Application of yield loci calculated from texture data. Textures and microstructures, 11, 23-39.
P. Van Houtte (1992). Anisotropic Plasticity, Numerical Modelling of Material Deformation Processes. Research, Development and Applicaitons, P. Hartley snd I. Pillinger (Eds.), Springer Verglag.
P. Van Houtte (1994). Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials. Int. J. Plasticity, 10, 719-748.
P. Van Houtte (1995). Micromechanics of polycrystalline materials. Chaire Francqui, Université de Liege.
P. Van Houtte (1996). Microscopic strain heterogeneity and deformation texture prediction, Textures of Materials. Proceedings of the 11th Int. Conf. on Textures of Materials, 1, ICOTOM11, Z. Liang, L. Zuo and Y. Chu (Eds.).
P. Van Houtte, L. Delannay and I. Samajdar (1999). Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Texture and Microstructure, 31, 109-149.
P. Van Houtte (2001). Fast calculation of average Taylor factors and Mandel spins for all possible strain modes. Int. J. Plasticity, 17, 807-818.
P. Van Houtte, L. Delannay and S. R. Kalidindi (2002). Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Int. Jour of Plasticity, 18, 359-377.
H. Vegter, Y. An, H. H. Pijlman and J. Huetink (1999a). Different approaches to describe the plastic material behaviour of steel and aluminium-alloys in sheet forming. 2nd ESAFORM Conference on Material Forming, Guimaraes, Portugal, J. A. Covas (Ed.).
H. Vegter, Y. An, H. H. Pijlman and J. Huetink (1999b). Advanced Mechanical Testing on Aluminium Alloys and Low Carbon Steels for Sheet Forming. Numisheet'99, 13-17 September 1999, 1, Besançon, France, J. C. Gélin and P. Picart (Eds.), Université de Franche-Comté 3-8.
C. Vial, R. M. Caddell and W, F. Hosford (1983). Yield loci of anisotropic sheet metals. Int. J. of Mech. Sci., 25, 899.
N. Wang, F. R. Hall, I. Pillinger, P. Hartley and C. E. N. Sturgess (1992). Finite-element prediction of texture evolution in material forming. Numerical Methods in Industrial Forming Processes, Chenot, Wood and Zienkiewicz, (Eds.), 193.
B. Weber, A. Carmet, M. Buchêt, B. Bomprezzi, J. Bourgasser, J. L. Robert (1999). Estimation de durée de vie sous chargement quelconque: application a un composant automobile. Actes de la conférence de la Société Française de Métallurgie et de Matériaux "Dimensionnement en fatigue des structures, Démarches et Outils", Paris 2-3 juin.
J. Winters (1996). Implementation of a texture-based yield locus into an elastoplastic finite element code. Application to sheet forming. Katholieke Universiteit Leuven, proefschrift voorgedragen tot het behalen van het doctoraat in de toegepaste wetenschappen, Katholieke Universiteit Leuven.
G. Winther, D. J. Jensen and N. Hansen (1997). Modelling flow stress anisotropy caused by deformation induced dislocation boundaries. Acta Mater., 45(6), 2455-2465.
Y. Y. Zhu and S. Cescotto (1996). Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method. Comput. Methods Appl. Mech. Engrg., 129, 177-209.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.