[en] Almost all catchments plot within a small envelope around the Budyko curve. This apparent
behaviour suggests that organizing principles may play a role in the evolution of catchments. In
this paper we applied the thermodynamic principle of maximum power as the organizing principle.
In a top-down approach we derived mathematical formulations of the relation between relative
wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in an
inverse manner such that when the conductances are optimized with the maximum power principle,
the steady state behaviour of the model leads exactly to a point on the asymptotes of the Budyko
curve. Subsequently, we added dynamics in forcing and actual evaporations, causing the Budyko
curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations
compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual
evaporation. Thus by constraining the model with the asymptotes of the Budyko curve we were able
to derive more realistic values of the aridity and evaporation index without any calibration parameter.
Future work should focus on better representing the boundary conditions of real catchments and
eventually adding more complexity to the model.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Westhoff, Martijn ; Université de Liège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Zehe, Erwin; Karlsruhe institute of Technology > Institute of Water and River Basin Management > Chair of Hydrology
Archambeau, Pierre ; Université de Liège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Dewals, Benjamin ; Université de Liège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis
Publication date :
January 2016
Journal title :
Hydrology and Earth System Sciences
ISSN :
1027-5606
eISSN :
1607-7938
Publisher :
European Geosciences Union, Katlenburg-Lindau, Germany
Special issue title :
Catchment co-evolution: space–time patterns and functional controls
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aalbers, E.: Evaporation in conceptual rainfall-runoff models: testing model realism using remotely sensed evaporation, Master's thesis, Delft University of Technology, available at: http://repository.tudelft.nl/view/ir/uuid: a2edc688-2270-4823-aa93-cb861cf481a2/, last access: 10 August 2015.
Budyko, M. I.: Climate and Life, 508 pp., Academic Press, New York, 1974.
Choudhury, B.: Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model, J. Hydrol., 216, 99-110, doi:10.1016/S0022-1694(98)00293-5, 1999.
del Jesus, M., Foti, R., Rinaldo, A., and Rodriguez-Iturbe, I.: Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins, P. Natl. Acad. Sci. USA, 109, 20837-20841, doi:10.1073/pnas.1218636109, 2012.
Devlin, R.: Plant Physiology, 3rd Edn., D. Van Nostrand Company, New York, 1975.
Dewar, R. C.: Maximum Entropy Production as an Inference Algorithm that Translates Physical Assumptions into Macroscopic Predictions: Don't Shoot the Messenger, Entropy, 11, 931-944, doi:10.3390/e11040931, 2009.
Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J., Blöschl, G., Gelfan, A. N., Harman, C., Kleidon, A., Bogaard, T. A., Wang, D., Wagener, T., Scherer, U., Zehe, E., Bierkens, M. F. P., Di Baldassarre, G., Parajka, J., van Beek, L. P. H., van Griensven, A., Westhoff, M. C., and Winsemius, H. C.: Advancing catchment hydrology to deal with predictions under change, Hydrol. Earth Syst. Sci., 18, 649-671, doi:10.5194/hess-18-649-2014, 2014.
Harman, C. and Troch, P. A.: What makes Darwinian hydrology "Darwinian"" Asking a different kind of question about landscapes, Hydrol. Earth Syst. Sci., 18, 417-433, doi:10.5194/hess-18-417-2014, 2014.
Hergarten, S., Winkler, G., and Birk, S.: Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns, Hydrol. Earth Syst. Sci., 18, 4277-4288, doi:10.5194/hess-18-4277-2014, 2014.
Kleidon, A.: Nonequilibrium thermodynamics and maximum entropy production in the Earth system, Naturwissenschaften, 96, 653-677, doi:10.1007/s00114-009-0509-x, 2009.
Kleidon, A. and Renner, M.: Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications, Hydrol. Earth Syst. Sci., 17, 2873-2892, doi:10.5194/hess-17-2873-2013, 2013.
Kleidon, A. and Schymanski, S.: Thermodynamics and optimality of the water budget on land: a review, Geophys. Res. Lett., 35, L20404, doi:10.1029/2008GL035393, 2008.
Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale, Hydrol. Earth Syst. Sci., 17, 225-251, doi:10.5194/hess-17-225-2013, 2013.
Kleidon, A., Renner, M., and Porada, P.: Estimates of the climatological land surface energy and water balance derived from maximum convective power, Hydrol. Earth Syst. Sci., 18, 2201-2218, doi:10.5194/hess-18-2201-2014, 2014.
Kollet, S. J.: Optimality and inference in hydrology from entropy production considerations: synthetic hillslope numerical experiments, Hydrol. Earth Syst. Sci. Discuss., 12, 5123-5149, doi:10.5194/hessd-12-5123-2015, 2015.
McDonnell, J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M., Selker, J., and Weiler, M.: Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology, Water Resour. Res., 43, W07301, doi:10.1029/2006WR005467, 2007.
Milly, P. C. D.: Climate, soil water storage, and the average annual water balance, Water Resour. Res., 30, 2143-2156, doi:10.1029/94WR00586, doi:10.1029/94WR00586, 1994.
Porada, P., Kleidon, A., and Schymanski, S. J.: Entropy production of soil hydrological processes and its maximisation, Earth Syst. Dynam., 2, 179-190, doi:10.5194/esd-2-179-2011, 2011.
Potter, N. J., Zhang, L., Milly, P. C. D., McMahon, T. A., and Jakeman, A. J.: Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments, Water Resour. Res., 41, w06007, doi:10.1029/2004WR003697, 2005.
Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Bras, R. L., Ijjasz-Vasquez, E., and Marani, A.: Minimum energy and fractal structures of drainage networks, Water Resour. Res., 28, 2183-2195, doi:10.1029/92WR00801, 1992.
Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Ijjasz-Vasquez, E., and Marani, A.: Fractal structures as least energy patterns: The case of river networks, Geophys. Res. Lett., 19, 889-892, doi:10.1029/92GL00938, 1992.
Savenije, H. H. G.: The importance of interception and why we should delete the term evapotranspiration from our vocabulary, Hydrol. Process., 18, 1507-1511, doi:10.1002/hyp.5563, 2004.
Schaake, J., Cong, S., and Duan, Q.: The US MOPEX data set, IAHS-AISH P., 307, 9-28, 2006.
Schaefli, B., Harman, C. J., Sivapalan, M., and Schymanski, S. J.: HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling, Hydrol. Earth Syst. Sci., 15, 635-646, doi:10.5194/hess-15-635-2011, 2011.
Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward approach to hydrological prediction, Hydrol. Process., 17, 2101-2111, 2003.
Thompson, S., Harman, C., Troch, P., Brooks, P., and Sivapalan, M.: Spatial scale dependence of ecohydrologically mediated water balance partitioning: a synthesis framework for catchment ecohydrology, Water Resour. Res., 47, W00J03, doi:10.1029/2010WR009998, 2011.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898, doi:10.2136/sssaj1980.03615995004400050002x, 1980.
Wang, D. and Tang, Y.: A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models, Geophys. Res. Lett., 41, 4569-4577, doi:10.1002/2014GL060509, 2014.
Wang, D., Zhao, J., Tang, Y., and Sivapalan, M.: A thermodynamic interpretation of Budyko and L'vovich formulations of annual water balance: proportionality hypothesis and maximum entropy production, Water Resour. Res., 51, 3007-3016, doi:10.1002/2014WR016857, 2015.
Wang, J. and Bras, R. L.: A model of evapotranspiration based on the theory of maximum entropy production, Water Resour. Res., 47, W03521, doi:10.1029/2010WR009392, 2011.
Westhoff, M. C. and Zehe, E.: Maximum entropy production: can it be used to constrain conceptual hydrological models?, Hydrol. Earth Syst. Sci., 17, 3141-3157, doi:10.5194/hess-17-3141-2013, 2013.
Westhoff, M. C., Zehe, E., and Schymanski, S. J.: Importance of temporal variability for hydrological predictions based on the maximum entropy production principle, Geophys. Res. Lett., 41, 67-73, doi:10.1002/2013GL058533, 2014.
Yang, H., Yang, D., Lei, Z., and Sun, F.: New analytical derivation of the mean annual water-energy balance equation, Water Resour. Res., 44, W03410, doi:10.1029/2007WR006135, 2008.
Zehe, E., Blume, T., and Blöschl, G.: The principle of "maximum energy dissipation": a novel thermodynamic perspective on rapid water flow in connected soil structures, Philos. T. R. Soc. B, 365, 1377-1386, doi:10.1098/rstb.2009.0308, 2010.
Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and Westhoff, M.: A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour, Hydrol. Earth Syst. Sci., 17, 4297-4322, doi:10.5194/hess-17-4297-2013, 2013.
Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18, 4635-4655, doi:10.5194/hess-18-4635-2014, 2014.
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P. R.: A rational function approach for estimating mean annual evapotranspiration, Water Resour. Res., 40, w02502, doi:10.1029/2003WR002710, 2004.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.