Article (Scientific journals)
Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater
Palau, Jordi; Jamin, Pierre; Badin, Alice et al.
2016In Water Research
Peer Reviewed verified by ORBi
 

Files


Full Text
Palau et al 2016 Water Res Dual carbon-chlorine isotope for 111 TCA degradation in groundwater.pdf
Publisher postprint (1.05 MB)
final paper
Download
Full Text Parts
FinalManuscript.pdf
Author postprint (254.48 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
volatile organic contaminants; chlorinated solvents; compound-specific isotope analysis; contaminant fate; groundwater remediation; abiotic degradation; contaminants organiques volatils; solvants chlorés; dégradation abiotique; isotopes stables; carbone; chlore
Abstract :
[en] Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ13C/Δδ37Cl) previously determined in the laboratory for dehydrohalogenation / hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r2 = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field.
Disciplines :
Geological, petroleum & mining engineering
Earth sciences & physical geography
Author, co-author :
Palau, Jordi;  Université de Neuchâtel > Centre d'Hydrogéologie et Géothermie
Jamin, Pierre ;  Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Badin, Alice;  Université de Neuchâtel > Centre d'Hydrogéologie et Géothermie
Vanhecke, Nicolas;  AECOM Leuven (Belgique)
Haerens, Bruno;  AECOM Leuven (Belgique)
Brouyère, Serge  ;  Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Hunkeler, Daniel;  Université de Neuchâtel > Centre d'Hydrogéologie et Géothermie
Language :
English
Title :
Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater
Publication date :
February 2016
Journal title :
Water Research
ISSN :
0043-1354
eISSN :
1879-2448
Publisher :
Pergamon Press, Oxford, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 09 February 2016

Statistics


Number of views
146 (24 by ULiège)
Number of downloads
301 (11 by ULiège)

Scopus citations®
 
30
Scopus citations®
without self-citations
25
OpenCitations
 
27

Bibliography


Similar publications



Contact ORBi