[en] Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like
1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ13C/Δδ37Cl) previously determined in the laboratory for dehydrohalogenation / hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r2 = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field.
Abe Y., Aravena R., Zopfi J., Shouakar-Stash O., Cox E., Roberts J.D., Hunkeler D. Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environ. Sci. Technol. 2009, 43(1):101-107.
Aeppli C., Holmstrand H., Andersson P., Gustafsson O. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal. Chem. 2010, 82(1):420-426.
Arnold W.A., Roberts A.L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles. Environ. Sci. Technol. 2000, 34(9):1794-1805.
ATDSR Toxicological Profile for Trichloroethylene, Agency for Toxic Substances and Disease Registry 2003, U.S. Department of Health and Human Services, Public Health Service., Atlanta, GA.
ATDSR Toxicological Profile for 1,1,1-Trichloroethane, Agency for Toxic Substances and Disease Registry 2006, U.S. Department of Health and Human Services, Public Health Service., Atlanta, GA.
ATDSR Toxicological Profile for Vinyl Chloride, Agency for Toxic Substances and Disease Registry 2006, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
Badin A., Buttet G., Maillard J., Holliger C., Hunkeler D. Multiple dual C-Cl isotope patterns associated with reductive dechlorination of tetrachloroethene. Environ. Sci. Technol. 2014, 48(16):9179-9186.
Bernstein A., Shouakar-Stash O., Ebert K., Laskov C., Hunkeler D., Jeannottat S., Sakaguchi-Soder K., Laaks J., Jochmann M.A., Cretnik S., Jager J., Haderlein S.B., Schmidt T.C., Aravena R., Elsner M. Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal. Chem. 2011, 83(20):7624-7634.
Braeckevelt M., Fischer A., Kastner M. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers. Appl. Microbiol. Biotechnol. 2012, 94(6):1401-1421.
Brouyère S., Dassargues A., Hallet V. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation. J. Contam. Hydrol. 2004, 72(1-4):135-164.
Butler E.C., Hayes K.F. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ. Sci. Technol. 2000, 34(3):422-429.
Centler F., Hesse F., Thullner M. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations. J. Contam. Hydrol. 2013, 152:97-116.
Christensen T.H., Bjerg P.L., Banwart S.A., Jakobsen R., Heron G., Albrechtsen H.J. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 2000, 45(3-4):165-241.
Cretnik S., Thoreson K.A., Bernstein A., Ebert K., Buchner D., Laskov C., Haderlein S., Shouakar-Stash O., Kliegman S., McNeill K., Elsner M. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating Bacteria: Insights from dual element isotope analysis (13C/12C, 37Cl/35Cl). Environ. Sci. Technol. 2013, 47(13):6855-6863.
Culubret E.N., Luz M., Amils R., Sanz J.L. Biodegradation of 1,1,1,2-tetrachloroethane under methanogenic conditions. Water Sci. Technol. 2001, 44(4):117-122.
Elsner M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J. Environ. Monit. 2010, 12(11):2005-2031.
Elsner M., Cwiertny D.M., Roberts A.L., Lollar B.S. 1,1,2,2-tetrachloroethane reactions with OH-Cr(II), granular iron, and a copper-iron bimetal: Insights from product formation and associated carbon isotope fractionation. Environ. Sci. Technol. 2007, 41(11):4111-4117.
Elsner M., Zwank L., Hunkeler D., Schwarzenbach R.P. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ. Sci. Technol. 2005, 39(18):6896-6916.
Fennelly J.P., Roberts A.L. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ. Sci. Technol. 1998, 32(13):1980-1988.
Field J.A., Sierra-Alvarez R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev. Environ. Sci. Bio/Technol. 2004, 3(3):185-254.
Gauthier T.D., Murphy B.L. Age dating groundwater plumes based on the ratio of 1,1-dichloroethylene to 1,1,1-trichloroethane: an uncertainty analysis. Environ. Forensics 2003, 4(3):205-213.
Gerkens R.R., Franklin J.A. The rate of degradation of 1,1,1-Trichloroethane in water by hydrolysis and dehydrochlorination. Chemosphere 1989, 19(12):1929-1937.
Han Y.S., Hyun S.P., Jeong H.Y., Hayes K.F. Kinetic study of cis-dichloroethylene (cis-DCE) and vinyl chloride (VC) dechlorination using green rusts formed under varying conditions. Water Res. 2012, 46(19):6339-6350.
Hara J., Ito H., Suto K., Inoue C., Chida T. Kinetics of trichloroethene dechlorination with iron powder. Water Res. 2005, 39(6):1165-1173.
Hirschorn S.K., Dinglasan M.J., Elsner M., Mancini S.A., Lacrampe-Couloume G., Edwards E.A., Lollar B.S. Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ. Sci. Technol. 2004, 38(18):4775-4781.
Hunkeler D., Abe Y., Broholm M.M., Jeannottat S., Westergaard C., Jacobsen C.S., Aravena R., Bjerg P.L. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J. Contam. Hydrol. 2011, 119(1-4):69-79.
Hunkeler D., Aravena R. Environmental Isotopes in Biodegradation and Bioremediation 2010, 249-293. CRC Press, Boca Raton. C.M. Aelion, P. Hohëner, D. Hunkeler, R. Aravena (Eds.).
Hunkeler D., Aravena R., Berry-Spark K., Cox E. Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ. Sci. Technol. 2005, 39(16):5975-5981.
Hunkeler D., Meckenstock R.U., Sherwood Lollar B., Schmidt T.C., Wilson J.T. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants Using Compound Specific Isotope Analysis (CSIA) 2008, 59. US EPA, Oklahoma.
Hunkeler D., Morasch B. Environmental Isotopes in Biodegradation and Bioremediation 2010, 79-118. CRC Press, Boca Raton. C.M. Aelion, P. Hohëner, D. Hunkeler, R. Aravena (Eds.).
Jeannottat S., Hunkeler D. Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethene in the unsaturated zone. Environ. Sci. Technol. 2012, 46(6):3169-3176.
Jin B., Laskov C., Rolle M., Haderlein S.B. Chlorine isotope analysis of organic contaminants using GC-qMS: method optimization and comparison of different evaluation schemes. Environ. Sci. Technol. 2011, 45(12):5279-5286.
Lee W., Batchelor B. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ. Sci. Technol. 2002, 36(23):5147-5154.
Lojkasek-Lima P., Aravena R., Parker B.L., Cherry J.A. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis. Ground Water 2012, 50(5):754-764.
Lojkasek-Lima P., Aravena R., Shouakar-Stash O., Frape S.K., Marchesi M., Fiorenza S., Vogan J. Evaluating TCE abiotic and biotic degradation pathways in a permeable reactive barrier using compound specific isotope analysis. Ground Water Monit. Remediat. 2012, 32(4):53-62.
Lollar B.S., Hirschorn S., Mundle S.O., Grostern A., Edwards E.A., Lacrampe-Couloume G. Insights into enzyme kinetics of chloroethane biodegradation using compound specific stable isotopes. Environ. Sci. Technol. 2010, 44(19):7498-7503.
Moran M.J., Zogorski J.S., Squillace P.J. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007, 41(1):74-81.
O'Loughlin E.J., Burris D.R. Reduction of halogenated ethanes by green rust. Environ. Toxicol. Chem. 2004, 23(1):41-48.
Orban P., Brouyère S., Batlle-Aguilar J., Couturier J., Goderniaux P., Leroy M., Maloszewski P., Dassargues A. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. J. Contam. Hydrol. 2010, 118(1-2):79-93.
Pagan M., Cooper W.J., Joens J.A. Kinetic studies of the homogeneous abiotic reactions of several chlorinated aliphatic compounds in aqueous solution. Appl. Geochem. 1998, 13(6):779-785.
Palau J., Cretnik S., Shouakar-Stash O., Hoche M., Elsner M., Hunkeler D. C and Cl isotope fractionation of 1,2-Dichloroethane displays unique delta(13)C/delta(37)Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation. Environ. Sci. Technol. 2014, 48(16):9430-9437.
Palau J., Shouakar-Stash O., Hunkeler D. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane. Environ. Sci. Technol. 2014, 48(24):14400-14408.
Parker B.L., McWhorter D.B., Cherry J.A. Diffusive loss of non-aqueous phase organic solvents from idealized fracture networks in geologic media. Ground Water 1997, 35(6):1077-1088.
Sakaguchi-Soder K., Jager J., Grund H., Matthaus F., Schuth C. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun. Mass Spectrom. 2007, 21(18):3077-3084.
Scheutz C., Durant N.D., Hansen M.H., Bjerg P.L. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface - a critical review. Water Res. 2011, 45(9):2701-2723.
Shouakar-Stash O., Drimmie R.J., Zhang M., Frape S.K. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl. Geochem. 2006, 21(5):766-781.
Shouakar-Stash O., Frape S.K., Drimmie R.J. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. J. Contam. Hydrol. 2003, 60(3-4):211-228.
Song H., Carraway E.R. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 2005, 39(16):6237-6245.
Sun B.L., Griffin B.M., Ayala-del-Rio H.L., Hashsham S.A., Tiedje J.M. Microbial dehalorespiration with 1,1,1-trichloroethane. Science 2002, 298(5595):1023-1025.
Suthersan S., Horst J., Klemmer M., Malone D. Temperature-activated auto-decomposition reactions: an under-utilized in situ remediation solution. Ground Water Monit. Remediat. 2012, 32(3):34-40.
Thullner M., Fischer A., Richnow H.H., Wick L.Y. Influence of mass transfer on stable isotope fractionation. Appl. Microbiol. Biotechnol. 2013, 97(2):441-452.
USEPA Priority Pollutants 2013.
van Breukelen B.M. Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ. Sci. Technol. 2007, 41(11):4004-4010.
Vanstone N., Elsner M., Lacrampe-Couloume G., Mabury S., Lollar B.S. Potential for identifying abiotic chloroalkane degradation mechanisms using carbon isotopic fractionation. Environ. Sci. Technol. 2008, 42(1):126-132.
Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161(1-3):291-314.
Wiegert C., Aeppli C., Knowles T., Holmstrand H., Evershed R., Pancost R.D., Machackova J., Gustafsson O. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Environ. Sci. Technol. 2012, 46(20):10918-10925.
Yagi O., Hashimoto A., Iwasaki K., Nakajima M. Aerobic degradation of 1,1,1-trichloroethane by Mycobacterium spp. isolated from soil. Appl. Environ. Microbiol. 1999, 65(10):4693-4696.
Zhang J.J., Joslyn A.P., Chiu P.C. 1,1-dichloroethene as a predominant intermediate of microbial trichloroethene reduction. Environ. Sci. Technol. 2006, 40(6):1830-1836.
Zwank L., Berg M., Elsner M., Schmidt T.C., Schwarzenbach R.P., Haderlein S.B. New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ. Sci. Technol. 2005, 39(4):1018-1029.