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a b s t r a c t

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater.
However, the application of CSIA to chlorinated ethanes has received little attention so far. These
compounds are toxic and prevalent groundwater contaminants of environmental concern. The high
susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different
competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In
this study, the use of a dual CeCl isotope approach to identify the active degradation pathways of 1,1,1-
TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE)
with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon
echlorine (CeCl) isotope trends determined in a recent laboratory study illustrated the potential of a
dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual
isotope slopes (Dd13C/Dd37Cl) previously determined in the laboratory for dehydrohalogenation/hydro-
lysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples
(0.6 ± 0.2, r2 ¼ 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant
degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor
contribution of additional degradation processes. This result, along with the little degradation of TCE
determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-
dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study
demonstrates that a dual CeCl isotope approach can strongly improve the qualitative and quantitative
assessment of 1,1,1-TCA degradation processes in the field.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Groundwater contamination by chlorinated aliphatic hydrocar-
bons (CAHs) is a major environmental problem and it has an
adverse impact on water resources (Moran et al., 2007). 1,1,1-
trichloroethane (1,1,1-TCA) and trichloroethene (TCE) are toxic
and persistent contaminants commonly found in polluted aquifers
because of their widespread use as solvents (ATDSR, 2003, 2006a).
TCE is frequently a co-contaminant in aquifers with 1,1,1-TCA due to
their similar industrial applications and both compounds are
considered as priority pollutants by the United States
tal Assessment and Water
08034, Spain.
Environmental Protection Agency (USEPA, 2013). In groundwater,
1,1,1-TCA may be transformed by multiple biotic and abiotic re-
actions (Fig. 1) (Scheutz et al., 2011), making it challenging to
elucidate active degradation pathways. This knowledge is neces-
sary to evaluate contaminant degradation and potential formation
of toxic intermediates. Identifying pathways is further complicated
in sites contaminated by mixed CAHs because some products of
1,1,1-TCA such as 1,1-dichloroethylene (1,1-DCE) can be formed
from different precursors (Fig. 1). Hence, identification of pathways
based solely on substrate-product concentration relationships may
lead to erroneous interpretations. Therefore, development of
innovative strategies for 1,1,1-TCA degradation pathways elucida-
tion and evaluation in the field is warranted.

In groundwater, 1,1,1-TCA is abiotically degraded to 1,1-DCE and
acetic acid (HAc) via dehydrohalogenation and hydrolysis (DH/HY),
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Fig. 1. Degradation pathways of chlorinated ethanes and ethenes. Aerobic biodegradation pathways are not shown. In grey color are indicated the compounds and pathways that
are not mentioned explicitly in the text. Compounds in bold represent the main contaminants investigated in this study. Dotted lines show reactions that can be both abiotically or
biotically mediated whereas solid lines indicate biodegradation pathways (Culubret et al., 2001; Field and Sierra-Alvarez, 2004) and dashed lines abiotic transformations catalyzed
by iron bearing minerals (Butler and Hayes, 2000; Han et al., 2012; Lee and Batchelor, 2002) and zero valent iron (Arnold and Roberts, 2000; Hara et al., 2005; Song and Carraway,
2005). For chlorinated ethanes, abiotic hydrolysis and dehydrohalogenation in water are included (Jeffers et al., 1989; Scheutz et al., 2011). Chlorinated and non-chlorinated
acetylenes and higher molecular compounds (i.e. C4eC6) produced during metal catalyzed reactions are not shown. (a) hydrogenolysis, (b) dihaloelimination, (c) dehy-
drohalogenation, (d) hydrolysis, (e) hydrogenation and (f) reactions that proceed via a-elimination. (d*) Transformation of CA to HAc evolves via hydrolysis of CA to ethanol and
subsequent fermentation to HAc.
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respectively (Scheutz et al., 2011) (Fig. 1). Thermal enhancement of
DH/HY has been recently proposed for in situ remediation of 1,1,1-
TCA contamination (Suthersan et al., 2012). Generally, reductive
dechlorination of TCE (biotic and abiotic) also results in the for-
mation of 1,1-DCE as minor product via hydrogenolysis (Arnold and
Roberts, 2000; Field and Sierra-Alvarez, 2004). However, Zhang
et al. (2006) found 1,1-DCE as the predominant intermediate in
microcosm degradation experiments of TCE prepared with a mi-
crobial culture derived from a landfill site. In addition, 1,1-DCE may
also result from dehydrohalogenation of 1,1,2-trichloroethane
(1,1,2-TCA) (Pagan et al., 1998) and from dihaloelimination of
1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) (Culubret et al., 2001;
O'Loughlin and Burris, 2004) (Fig. 1). 1,1-DCE is also a contami-
nant of environmental concern because it may be transformed to
vinyl chloride (VC) in anaerobic conditions (Fig. 1), a confirmed
carcinogenic compound (ATDSR, 2006b). In anaerobic conditions,
1,1,1-TCA may undergo metal catalyzed reduction either by natu-
rally occurring reductants such as iron sulfide (Butler and Hayes,
2000) and iron hydroxides (O'Loughlin and Burris, 2004) or by
zero valent iron (Fe(0)) in engineered systems (Fennelly and
Roberts, 1998). Reduction of 1,1,1-TCA by Fe(0) leads to the forma-
tion of 1,1-dichloroethane (1,1-DCA), ethene and ethane in parallel
pathways (Fennelly and Roberts, 1998) (Fig. 1). Biodegradation of
1,1,1-TCA under both aerobic and anaerobic conditions has been
reported in a number of studies (Field and Sierra-Alvarez, 2004;
Scheutz et al., 2011). Dehalorespiration of 1,1,1-TCA by the anaer-
obic bacterium Dehalobacter sp. strain TCA1 was demonstrated by
Sun et al. (2002). 1,1,1-TCAwas transformed into chloroethane (CA)
with transient formation of 1,1-DCA as intermediate. In aerobic
conditions, cometabolic oxidation of 1,1,1-TCA has been observed in
several studies with pure and enrichment cultures (Field and
Sierra-Alvarez, 2004; Yagi et al., 1999).

For a given compound, different degradation pathways are
sometimes related to distinct subsurface redox environments and,
therefore, redox conditions may help elucidating reaction path-
ways. However, for 1,1,1-TCA different reaction pathways may be
active under the same redox conditions. For instance, 1,1,1-TCA
biodegradation, via either reductive dechlorination or coox-
idation, and DH/HY can occur simultaneously in anaerobic or aer-
obic conditions, respectively, complicating their evaluation. In
addition, redox zones characterization may be difficult due to the
presence of micro-redox environments and/or strong redox gradi-
ents with depth within the contaminant plume (Christensen et al.,
2000). In this case, groundwater samples collected from conven-
tional long screen wells may be a mixture of water from different
parts of the plume with distinct redox conditions.
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Compound-specific isotope analysis (CSIA) is an innovative tool
to investigate degradation pathways of organic contaminants
because the extent of isotope fractionation (εbulk) during compound
transformation is highly reaction-specific (Hirschorn et al., 2004;
Hunkeler et al., 2005; Vanstone et al., 2008). The isotope fraction-
ation of the substrate can be quantified in laboratory studies using
the Rayleigh equation, which can be approximated by the following
expression, Eq. (1):

dhESzdhES0 þ εbulk ð‰Þ$lnf (1)

where dhES is the isotopic composition of element E at a remaining
fraction (f) and dhES0 is the initial isotopic composition.

In aquifers, transformation-induced isotope fractionation is
generally larger than the one related to phase transfer processes
such as sorption or volatilization (Braeckevelt et al., 2012). While
isotope fractionation of one element alone (e.g. εCbulk) could provide
pathway distinction in laboratory experiments (Elsner et al., 2007),
this is not possible under field conditions. Here, contaminant
concentration changes related to processes other than its trans-
formation (such as sorption and dispersion) cannot be excluded,
preventing accurate calculation of εbulk values. However, contami-
nant degradation pathways differentiation in the field may be
addressed using a dual isotope approach (Whiticar, 1999; Zwank
et al., 2005). Recent development of analytical methods for online
Cl-CSIA, either by continuous flow gas chromatography isotope
ratio mass spectrometry (GC-IRMS) (Shouakar-Stash et al., 2006) or
GC-quadrupole mass spectrometry (GC-qMS) (Aeppli et al., 2010;
Bernstein et al., 2011; Jin et al., 2011; Palau et al., 2014a;
Sakaguchi-Soder et al., 2007) has facilitated the measurement of
chlorine isotope ratios in chlorinated ethenes and ethanes. These
novel methods open new possibilities for a dual CeCl isotope
approach, which has not yet been applied to investigate the fate of
chlorinated ethanes in the field.

During the course of a reaction, combined changes in isotope
ratios (e.g. Dd13C vs. Dd37Cl) for a given reactant generally yield a
linear trend in a dual element isotope plot (Abe et al., 2009; Cretnik
et al., 2013; Palau et al., 2014a). The dual element isotope slope
(L ¼ Dd13C/Dd37Cl z ε

C
bulk=ε

Cl
bulk) reflects isotope effects of both

elements and, thus, different slopes may be expected for distinct
transformationmechanisms involving different bonds with distinct
elements (Elsner, 2010). Following this approach, dual isotope
slopes observed in the field can be compared to the slopes deter-
mined in laboratory experiments to identify degradation pathways.
A significant advantage of the dual isotope approach is that the L

value often remains constant, regardless of the occurrence of
transport and retardation processes (Thullner et al., 2013). The
reason is that such processes are generally non- or slightly-isotope-
fractionating so that both elements are affected similarly. In this
case, by taking the ratio of the isotope shift for the two elements
(e.g., Dd13C/Dd37Cl) their effect is canceled out (Elsner et al., 2005).
In addition, if a given contaminant is simultaneously degraded by
two different pathways, the dual isotope approach could allow
determining the portion of reaction occurring through each
pathway (Centler et al., 2013; van Breukelen, 2007). For 1,1,1-TCA,
distinctly different dual CeCl isotope trends were determined
during oxidationwith persulfate, reduction by Fe(0) and DH/HY in a
recent laboratory study (Palau et al., 2014b), illustrating the po-
tential of this approach for 1,1,1-TCA degradation pathways differ-
entiation. The dual CeCl isotope approach has been applied to a
limited number of chlorinated ethenes contaminated sites (Badin
et al., 2014; Hunkeler et al., 2011; Lojkasek-Lima et al., 2012a;
2012b; Wiegert et al., 2012) but, to our knowledge, not to sites with
chlorinated ethanes.

In this study, dual CeCl isotope analysis of 1,1,1-TCA in
groundwater samples was performed for the first time with the
purpose of elucidating the fate of 1,1,1-TCA in a contaminated
aquifer. In order to evaluate the potential of the multi-isotope
analysis and the dual CeCl isotope slopes to identify degradation
pathways of 1,1,1-TCA in the field, the isotope ratios of 1,1,1-TCA
(d13C and d37Cl) and 1,1-DCE (d13C) from field samples, in
conjunctionwith concentration data, were compared to the isotope
patterns determined from a previous laboratory experiment of
1,1,1-TCA transformation by DH/HY (Palau et al., 2014b). In addition,
the isotopic composition of TCE (d13C and d37Cl) detected in the
aquifer was also determined to assess its transformation.
2. Field site

The dual CeCl isotope approach was evaluated at a site where
the subsurface is impacted by a mixture of CAHs. A detailed
hydrogeological site characterization and complementary infor-
mation about subsurface contamination are available in the
Supplementary material (SI). The origin of the contamination was
related to an industrial plant where 1,1,1-TCA and TCE were used as
solvents for cleaning and degreasing metal parts since the 60's. In
the late 80's, an environmental survey at the site revealed impor-
tant subsurface contamination in the north-eastern part of the
plant, where the waste disposal and the delivery zones were
located (Fig. 2).

The lithology at the site consists of, from top to bottom, Qua-
ternary loess deposits (from 5 to 18 m thick), a layer of flint
conglomerate resulting from chalk alteration and dissolution (from
4 to 8 m thick), Senonian chalks forming the fractured bedrock
aquifer (thickness of ~30 m) and Campanian smectite clay corre-
sponding to the lowpermeability basis of the aquifer. The chalk unit
can be considered as a dual porosity aquifer composed of high
matrix porosity (up to 45%) and much lower fracture porosity (on
the order of 1e5%) (Brouy�ere et al., 2004; Orban et al., 2010).
Despite the relatively low fracture porosity, its contribution to the
hydraulic conductivity is predominant (see SI). In the studied area,
the chalk aquifer is unconfined and the groundwater table is found
between 16.9 and 28.6 m below ground surface, showing an annual
fluctuation of up to 2 m and inter-annual variations of approxi-
mately 5 m. Groundwater flows towards north-west and the
average hydraulic gradient is ~1% (Fig. 2). According to the hy-
draulic conductivity range determined at the site by pumping tests
(see SI) and assuming an effective porosity of 0.01 (Orban et al.,
2010), the groundwater seepage velocity can be estimated to be
0.3e8.6 m d�1 (SI).
3. Material and methods

3.1. Groundwater sampling

The sampling methods are described in detail in the SI. Briefly,
the field site is equipped with a groundwater monitoring network
consisting of 30 wells situated along the CAHs plume. Water sam-
ples from selected wells (18 wells, Fig. 2A) were collected for
chemical and isotope analysis in February 2011 (first campaign) and
March 2013 (second campaign). Prior to samples collection,
monitoring wells were purged (3e5 well volumes) until tempera-
ture, pH, redox potential, electrical conductivity and dissolved ox-
ygen (DO) stabilized. Samples for CAHs concentration and isotope
analysis were collected in 40 mL glass vials closed without head-
space using screw caps with Teflon coated septa, preserved at pH ~2
with HNO3 (10%) and stored at 4 �C in the dark until analysis.
Concentration analysis of CAHs was performed within 48 h after
samples collection.



Fig. 2. (A) Site map and groundwater monitoring wells network. Dashed lines correspond to the groundwater surface (in m above sea level) and contour lines depict the 1,1,1-TCA
concentrations in the aquifer. (B) Total concentration (i.e. 1,1,1-TCAþ1,1-DCE) (right y-axis, line) and concentration of 1,1,1-TCA and 1,1-DCE normalized by the total concentration
(left y-axis, bars). (C) Total concentration (i.e. TCEþ1,1-DCE) (right y-axis, line) and concentration of TCE and 1,1-DCE normalized by the total concentration (left y-axis, bars). The
data indicated were obtained in March 2013 but similar concentration patterns were observed in February 2011 (Fig. S2, SI).
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3.2. Chemical and isotope analysis

Detailed descriptions of analytical methods are available in the
SI. The DH/HY experiments preparation and analysis for concen-
tration and isotope ratios are thoroughly described in Palau et al.
(2014b) (see a summary in the SI). Concentration analysis of
CAHs in groundwater samples was performed by GC-MS in an
accredited commercial laboratory. The analysis of redox sensitive
species in groundwater samples was performed by ion chroma-
tography (nitrate and sulfate) and atomic absorption spectrometry
(iron and manganese) at the University of Li�ege.

Carbon isotope ratios (i.e. 13C/12C) of 1,1,1-TCA, TCE and 1,1-DCE
were determined by GC-IRMS, whereas chlorine isotope ratios (i.e.
37Cl/35Cl) of 1,1,1-TCA and TCE were measured by GC-MS (Bernstein
et al., 2011; Palau et al., 2014b) at the University of Neuchâtel (see
SI). Isotope ratios of individual compounds were reported using the
delta notation, Eq. (2),

dhEsample ¼ RðhE=lEÞsample

RðhE=lEÞstandard
� 1 (2)

where R is the isotope ratio of heavy (hE) to light (lE) isotopes of an
element E (e.g., 13C/12C and 37Cl/35Cl). The d values are usually
expressed in per mil. For chlorine, the raw d37Cl values were ob-
tained by referencing against two external laboratory standards of
1,1,1-TCA and TCE according to Eq. (2). These standards were dis-
solved inwater andmeasured similarly to the samples interspersed
in the same sequence (Aeppli et al., 2010). Samples and standards
were diluted to a similar concentration and each of them was
measured ten times. Further details about samples and standards
analysis scheme as well as raw d37Cl values (two-point) calibration
to the standard mean ocean chloride (SMOC) scale are available in
the SI. Precision (1s) of the analysis was 0.3‰ for d13C and 0.4‰ for
d37Cl.

3.3. Calculation of substrate remaining fraction

In order to evaluate if the observed isotope pattern of primary
compounds and potential metabolites is related to reactive pro-
cesses, measured concentrations are transformed to relative con-
centrations taking into account reaction equations and related to
isotope ratios in analogy to the Rayleigh equation (Eq. (1)). As
several reactive processes might occur simultaneously, the slope of
such a plot will not necessarily correspond to a specific laboratory
enrichment factor (εbulk). The substrate remaining fraction (f) at a
certain well is estimated according to Eqs. (3) and (4) for 1,1,1-TCA
and TCE, respectively:

f1;1;1�TCA ¼ ½1;1;1� TCA�
½1;1;1� TCAþHAcþ 1;1� DCE�

¼ ½1;1;1� TCA�
½1;1;1� TCAþ 3:6� 1;1� DCE� (3)

fTCE ¼ ½TCE�
½TCEþ 1;1� DCE� (4)

where [1,1,1-TCA] and [TCE] are the aqueous concentration of 1,1,1-
TCA and TCE, respectively, and [1,1,1-TCA þ HAc þ 1,1-DCE] and
[TCE þ 1,1-DCE] are the total concentration of 1,1,1-TCA, TCE and
their respective products for the DH/HY and hydrogenolysis path-
ways, respectively (Fig. 1). Mole fractions are used instead of ab-
solute concentrations as the first take into account the effect of
dilution. Regarding the hydrogenolysis products of TCE, cis-1,2-DCE
is not considered in Eq. (4) as its concentration in groundwater (up
to 14 mg/L) is much smaller than that of 1,1-DCE (up to 10 mg/L). For
1,1,1-TCA, HAc produced by hydrolysis was not analyzed in
groundwater samples. In the aquifer, HAc is readily biodegraded
because it is used as electron donor and carbon source by the mi-
croorganisms. Therefore, for f1,1,1-TCA the expression [1,1,1-TCA]/
[1,1,1-TCA þ 3.6 � 1,1-DCE] is used, which accounts for the pro-
duced HAc. The yield of HAc (hydrolysis product) relative to 1,1-DCE
(dehydrohalogenation product) was estimated by first order curve
fitting of concentration-time data series obtained in a previous
laboratory study (Palau et al., 2014b) (see SI). Previous studies
showed that hydrolysis of 1,1-DCE in water is negligible at envi-
ronmental conditions (Gerkens and Franklin, 1989; Jeffers et al.,
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1989). The uncertainty of the calculated f1,1,1-TCA and fTCE in the field,
i.e. 39% and 17%, respectively, was estimated by error propagation
in Eqs. (3) and (4), and an uncertainty of 10% was assumed for
commercial concentration analysis of volatile organic compounds
(Hunkeler et al., 2008).

4. Results and discussion

4.1. Field geochemical conditions and CAHs concentration

High DO and nitrate concentrations were measured in ground-
water, ranging between 2.6 and 8.4 mg/L for DO and from 51.6 to
94.4 mg/L for nitrate, which indicate the presence of aerobic con-
ditions in the aquifer. Concentrations of dissolvedMn and dissolved
Fe are low (�0.01 and �0.07 mg/L, respectively), which is in
agreement with the presence of oxygen. Aerobic conditions are
unfavorable for microbial reductive dechlorination of CAHs.

The main CAHs present in groundwater, i.e. 1,1,1-TCA, TCE and
1,1-DCE, are detected at concentrations >1mg/L, reaching a value of
up to 20 mg/L for 1,1,1-TCA in the source area (well E in February
2011) and forming a CAHs plume spreading northwest (see the
1,1,1-TCA plume in Fig. 2A). Several compounds are detected at
lower concentrations, including 1,1,2-TCA (up to 500 mg/L), 1,1-DCA
(up to 140 mg/L), 1,2-dichloroethane (1,2-DCA, up to 270 mg/L) and
cis-1,2-dichloroethene (cis-1,2-DCE, up to 14 mg/L), and their mole
fractions relative to the total concentration of chlorinated ethanes
and ethenes are <7%. The presence of 1,1,1-TCA and TCE reductive
dechlorination products such as 1,1-DCA and cis-1,2-DCE, respec-
tively (Fig. 1), could be related to the occurrence of micro-anaerobic
environments in the aquifer. The contribution of 1,1,2-TCA dehy-
drohalogenation to 1,1-DCE concentration (Fig. 1) is probably very
small according to the lowmolar concentration of 1,1,2-TCA relative
to 1,1,1-TCA (<8%).

Concentrations of 1,1,1-TCA, TCE and 1,1-DCE show a similar
distribution in the aquifer and a large concentration range of two
orders of magnitude is observed for all of them in the wells situated
close to the plume centerline (Fig. S1, SI). High concentrations of
1,1-DCE are already present in the wells located in the source area,
up to 10 mg/L in well E in February 2011 (Fig. 2A and Fig. S1).
Changes in aqueous CAH concentrations in the plume can be
related to transformation processes but also to non-degradative
processes such as hydrodynamic dispersion and sorption. To ac-
count for dispersion, relative variations in 1,1,1-TCA, TCE and 1,1-
DCE concentrations along the plume can be expressed as mole
fractions. Increasing mole fractions of 1,1-DCE downgradient from
the source would be indicative of 1,1,1-TCA and/or TCE degradation
during transport. However, the mole fractions of 1,1-DCE in several
wells located close to the plume centerline show a small variation
relative to [1,1,1-TCA þ 1,1-DCE], from 0.41 to 0.60 (Fig. 2B and
Fig. S2), and the fractions of 1,1-DCE relative to [TCE þ 1,1-DCE] are
higher for the wells situated close to the source, i.e. wells E and C
(Fig. 2C and Fig. S2). Therefore, additional data is necessary to
confirm the contribution of degradation processes to the observed
changes in mole fractions.

4.2. Isotope patterns of 1,1,1-TCA, TCE and 1,1-DCE in the aquifer

The chlorine isotope composition of 1,1,1-TCA in groundwater
range from þ2.4 to þ7.6‰. In previous studies, chlorine isotope
ratios of pure phase 1,1,1-TCA from different manufacturers showed
values ranging from�3.54 toþ2.03‰ (Shouakar-Stash et al., 2003).
Compared to the manufacturers' range, the higher range of d37Cl
values in groundwater suggests that 1,1,1-TCA could be affected by
degradation processes. Similarly, the carbon isotopic composition
of 1,1,1-TCA in groundwater, which ranges from �21.1 to �25.1‰
(with the exception of the value of �26.3‰ measured in the well E
in February 2011), is also higher than the manufacturers’ range,
which varies between �25.5 and �31.6‰ (Hunkeler and Aravena,
2010), supporting 1,1,1-TCA transformation in the aquifer. To eval-
uate in more detail whether the variations of isotope ratios of 1,1,1-
TCA in groundwater are due to degradation, d37Cl and d13C values
are related to the concentration data according to the Rayleigh
equation (Eq. (1)) in Fig. 3C and D. Chlorine and carbon isotope
ratios of 1,1,1-TCA exhibit an enrichment in heavy isotopes (i.e. 37Cl
and 13C) with decreasing mole fractions, with the exception of data
fromwells A, E and G (redmarkers in Fig. 3C and D), confirming that
isotope variations of 1,1,1-TCA are related to its degradation. The
d13C values of 1,1-DCE in groundwater, from �18.5 to �25.3‰, are
generally depleted in 13C compared to those of 1,1,1-TCA (Fig. 3D),
which is consistent with the abiotic formation of 1,1-DCE from 1,1,1-
TCA via dehydrohalogenation. In addition, this isotope pattern also
suggests that 1,1-DCE is not further degraded in most of the wells.

In well A, carbon and chlorine isotopes ratios of 1,1,1-TCA are
significantly enriched in both 13C and 37Cl. These higher values
could be explained either by a distinct source of 1,1,1-TCA with a
heavier isotope composition or by the effect of biodegradation.
Relatively low DO values varying from 1.0 to 1.7 mg/L were
measured in this well between 2005 and 2008, which could indi-
cate that micro-anaerobic environments favorable to microbial
reductive dechlorination of 1,1,1-TCA took place at that time and
that 1,1,1-TCA affected by biodegradation is still present in the vi-
cinity of well A. In contrast, for wells E and G, d13C1,1,1-TCA values are
slightly depleted in 13C (up to �26.3‰ in E-February 2011), while
d37Cl1,1,1-TCA values are lightly enriched in 37Cl (up to þ5.8‰ in G-
March 2013). Such behavior could be related to the effect of
vaporization and diffusion processes on the residual 1,1,1-TCA
contamination in the unsaturated zone (Jeannottat and Hunkeler,
2012). Wells E and G are located in the vicinity of the source area
(Fig. 2A) and previous reports at the site showed that, when the
water level rises, it sometimes reaches highly contaminated parts of
the unsaturated zone in the source area (see SI), leading to a direct
input of residual contaminants into the aquifer. For the remaining
15 out of 18 wells investigated (i.e. B-D, F and H-R), observed var-
iations with regard to both Cl and C isotope values are well
described by a linear trend (r2 � 0.75, Fig. 3C and D). The intercepts
of the correlation lines, i.e. �0.7 ± 1.9‰ for Cl and �27 ± 1‰ for C
(the uncertainties were estimated by error propagation in the
regression equations for Cl and C isotope data indicated in Fig. 3C
and D), can be considered as an estimate of the initial isotopic
composition of 1,1,1-TCA (d37Cl0 and d13C0, respectively, Eq. (1)),
which agree very well with the ranges reported for pure 1,1,1-TCA
from different manufacturers, i.e. between �3.54 and þ 2.03‰
for Cl (Shouakar-Stash et al., 2003) and between�25.5 and�31.6‰
for C (Hunkeler and Aravena, 2010).

In order to compare the field and laboratory isotope patterns,
the isotope data of 1,1,1-TCA and 1,1-DCEmeasured during 1,1,1-TCA
transformation by DH/HY in the laboratory (Palau et al., 2014b)
were reevaluated in this study according to Eqs. (1) and (3) (Fig. 3A
and B). In general, the field d13C values of 1,1,1-TCA and 1,1-DCE
(Fig. 3D) exhibit a pattern similar to the one observed in the labo-
ratory batch experiment (Fig. 3B), providing further evidence for
1,1,1-TCA dehydrohalogenation in the aquifer. Compared to the
laboratory experiment, the correlation lines for field isotope data
show a smaller slope for Cl, i.e. �3.3 ± 0.8‰ (field, Fig. 3C)
and �4.8 ± 0.2‰ (laboratory, Fig. 3A), and a larger slope for C,
i.e.�2.5 ± 0.5‰ (field, Fig. 3D) and�1.6 ± 0.2‰ (laboratory, Fig. 3B).
However, when taking their uncertainty into consideration, the
slopes for field and laboratory data are relatively similar for both
elements. The larger slope obtained from field carbon isotope data
compared to the laboratory DH/HY experiment can be associated



Fig. 3. A, B) Isotopic composition of 1,1,1-TCA (d37Cl and d13C) and 1,1-DCE (d13C) during DH/HY of 1,1,1-TCA in batch experiments. Data from duplicate experiments are combined
(i.e. rhombus and circle symbol marks). C, D) Isotopic composition of 1,1,1-TCA (d37Cl and d13C) and 1,1-DCE (d13C) in groundwater samples. Dashed lines correspond to the 95%
confidence intervals of regression parameters. E, F) Isotopic composition of TCE (d37Cl and d13C) and 1,1-DCE (d13C) in groundwater samples. For field samples, data from both
sampling campaigns are combined, i.e. rhombus (February 2011) and circles (March 2013).
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with the simultaneous occurrence of biodegradation processes of
1,1,1-TCA in addition to DH/HY in the field, which is further inves-
tigated using a dual isotope approach (Section 4.3).

For TCE, several groundwater samples with different d13C values
(data points labeled in Fig. 3F) were selected for chlorine isotope
analysis, showing similar d37Cl values (from þ1.3 ± 0.4‰
toþ2.1 ± 0.4‰, Fig. 3E). The d37Cl values of TCE in groundwater fall
within the reported range of pure TCE from differentmanufacturers
which varies between �3.19 and þ 3.90‰ (Hunkeler and Aravena,
2010), suggesting little transformation of TCE. The carbon isotopic
composition of TCE varied from �21.6 to �30.0‰, with an average
of �27 ± 2‰ (±1s, n ¼ 24), except for the wells A (�18.1‰) and K
(�34.9‰) on March 2013. As observed for chlorine, most of the
d13CTCE values fall within the range of TCE from different manu-
facturers, i.e. between �24.5 and �33.5‰ (Hunkeler and Aravena,
2010), supporting little degradation of TCE in groundwater. Con-
trary to the isotope patterns of 1,1,1-TCA, d37ClTCE and d13CTCE values
do not show any enrichment in 37Cl and 13C with decreasing mole
fractions of TCE (Fig. 3E and F), confirming that TCE is not signifi-
cantly degraded in the aquifer. This result is in agreement with the
aerobic conditions determined in the aquifer. In addition, the d13C
values of 1,1-DCE are generally enriched in 13C compared to TCE
(Fig. 3F). According to the normal carbon isotope fractionation of
TCE during reductive dechlorination (Hunkeler andMorasch, 2010),
the d13C values of produced 1,1-DCE would be lower than those of
TCE. Therefore, for most of the samples, the observed changes in
d13CTCE can probably be associated with some variability in the
carbon isotopic composition of source TCE.

4.3. Dual CeCl isotope approach to investigate degradation
pathways in the field

Carbon and chlorine d isotope values of 1,1,1-TCA in ground-
water samples were combined in a dual isotope plot (Fig. 4). Isotope
values fromwells A, E and G are not included because, as indicated
above (Section 4.2), isotope data from these wells could be affected
by processes different than compound transformation. The plotted
data show a linear trend (r2 ¼ 0.75) with a dual isotope slope
(L ¼ Dd13C/Dd37Cl z ε

C
bulk=ε

Cl
bulk) of 0.6 ± 0.2, confirming that

transformation of 1,1,1-TCA is an important process in the aquifer.
This field L value is very different from that determined in a recent
laboratory study for oxidation (Fig. 4), clearly indicating that
oxidation cannot be the main process involved (Palau et al., 2014b).
In contrast, the field slope is closer to the one determined for 1,1,1-
TCA transformation via DH/HY in the laboratory (0.33 ± 0.04, Fig. 4)
(Palau et al., 2014b). The significant difference between the dual



Fig. 4. Dual CeCl isotope trends during transformation of 1,1,1-TCA in the investigated
test site and in two experimental systems. Data from both campaigns are combined
(blue circles). L values (±95% C.I.) are given by the slope of the linear regressions and
the black dashed lines correspond to the 95% C.I. Shaded areas (95% C.I) indicate
exclusive occurrence of either one of the two pathways. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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isotope slopes determined for the field and the DH/HY experiment
(ANCOVA, P ¼ 0.0003) suggests that additional degradation pro-
cesses of 1,1,1-TCA likely occur in the aquifer, as pointed out by the
carbon isotope patterns in Fig. 3. A higher L value (1.5 ± 0.1)
associated with the reduction of 1,1,1-TCA by zero-valent iron was
previously reported (Palau et al., 2014b), however, significant biotic
and/or abiotic reductive dechlorination of 1,1,1-TCA are discarded
due to the aerobic conditions in the aquifer. On the other hand, in
aerobic conditions, microbial cooxidative degradation of 1,1,1-TCA
to 2,2,2-trichloroethanol via CeH bond cleavage in the first reac-
tion step has been reported in several studies (Field and Sierra-
Alvarez, 2004; Yagi et al., 1999). The occurrence of microbial
oxidation of 1,1,1-TCAwould be consistent with the different slopes
determined from d13C1,1,1-TCA data for the field and the DH/HY
experiment in Fig. 3. As observed during abiotic oxidation of 1,1,1-
TCA in a recent study (Palau et al., 2014b), a much higher isotope
effect associated with CeH bond cleavage is expected for C
compared to Cl. This might explain, taking as a reference the slopes
determined from the laboratory experiment, the higher slope ob-
tained for C, �2.5 ± 0.5‰ (field) and �1.6 ± 0.2‰ (laboratory)
(Fig. 3B, D), compared to the smaller slope observed for
Cl, �3.3 ± 0.8‰ (field) and �4.8 ± 0.2‰ (laboratory) (Fig. 3A, C).
Therefore, a combination of DH/HYand microbial oxidation may be
taking place.

In this case, oxidation and DH/HY pathway-specific contribu-
tions to total 1,1,1-TCA degradation may be estimated using the
expression derived by van Breukelen (2007), Eq. (5),

F ¼ L$εClO � ε
C
O�

ε
C
D=H � ε

C
O

�
�L

�
ε
Cl
D=H � ε

Cl
O

� (5)

where F is the distribution of DH/HY and oxidation pathways, εCD=H
and ε

Cl
D=H are the C and Cl isotope fractionation values during DH/HY

of 1,1,1-TCA and ε
C
O and ε

Cl
O correspond to the C and Cl isotope

fractionation values for 1,1,1-TCA oxidation. For this equation, in
addition to the εbulk values of 1,1,1-TCA for both reactions involved,
only the dual isotope slope determined from field data
(L ¼ 0.6 ± 0.2) is necessary. The ε
C
bulk and ε

Cl
bulk values of 1,1,1-TCA

during DH/HY and oxidation reactions were reported in a recent
study (Palau et al., 2014b), showing values of �1.6 ± 0.2‰
and �4.7 ± 0.1‰ (DH/HY), �4.0 ± 0.2‰ and no chlorine isotope
fractionation (Oxidation). In this previous study, the isotope frac-
tionation values of 1,1,1-TCA during oxidative CeH bond cleavage
were determined abiotically by reaction with persulfate. Chlorine
isotope fractionation values for microbial oxidation of 1,1,1-TCA are
still not available in the literature, however, isotope fractionation
values determined from abiotically mediated oxidation may be
used as a rough approximation. In fact, isotope fractionation values
from abiotic reactions are often considered closest to the intrinsic
isotope effects (Lollar et al., 2010). According to the reported
reaction-specific εbulk values, the contribution of DH/HY was of
80± 10% (the uncertaintywas estimated by error propagation in Eq.
(5)). This result indicates a relatively small contribution of the
oxidation pathway, provided that the εbulk values for microbial
oxidation of 1,1,1-TCA by indigenous microorganisms at the site are
confirmed in future biodegradation studies. Eq. (5) assumes
simultaneous activity of both pathways, which is a likely assump-
tion in our case judging by the good linear correlation between
d37Cl and d13C values (Fig. 4).

The expected rate of 1,1,1-TCA degradation by DH/HY at the
measured groundwater temperature can be estimated using the
Arrhenius equation, Eq. (6),

k ¼ A$expð�Ea=RTÞ (6)

where k is the first order rate constant (s�1), A is the frequency
factor (s�1), R is the gas constant (8.314 � 10�3 kJ mol�1 K�1), Ea is
the activation energy (kJ$mol�1) and T is the absolute temperature
(K). According to the Ea (122.8 kJ mol�1) and A (8.7 � 1013 s�1)
values determined by Gauthier and Murphy (2003) from several
previous studies and the average groundwater temperature at the
site (284 ± 1 K,± 1s, n¼ 34), the transformation rate is estimated to
be 1.95 � 10�4 d�1 (i.e. half-live of around 10 years). This slow re-
action rate contrasts with the relatively fast groundwater seepage
velocity in the saturated zone (up to 8.6 m d�1), suggesting that
significant contaminant retardation would be necessary to explain
the high concentrations of 1,1-DCE in the source area. In this site,
owing to the high chalk matrix porosity (up to 45%), 1,1,1-TCA is
probably subject to retardation by diffusion into the matrix pore
water (Parker et al., 1997). In addition to degradation of 1,1,1-TCA in
the saturated zone, dehydrohalogenation of 1,1,1-TCA to 1,1-DCE
might also occur in the unsaturated part of the aquifer (up to
28m thick). Here, downwardmigration for dissolved compounds in
groundwater was estimated at ~1 m y�1 by different studies
(Brouy�ere et al., 2004; Orban et al., 2010). Degradation of 1,1,1-TCA
in the unsaturated zone is supported by the detection of 1,1-DCE in
relatively high concentrations in soil samples from the unsaturated
zone analyzed in previous reports (see SI).

5. Conclusions

The demonstration and evaluation of CAHs degradation pro-
cesses is necessary to predict their fate and long-term impact on
contaminated sites. The chlorine and carbon isotopic composition
of 1,1,1-TCA exhibited clear correlations with its varying mole
fractions, revealing the contribution of degradation processes of
1,1,1-TCA in the aquifer. Dual CeCl isotope data showed that, while
the slope obtained from field samples is very different from that
seen in the laboratory for oxidation, the fieldL value is closer to the
one determined for DH/HY, pointing to DH/HY as the dominant
degradation pathway. In addition, the observed deviation from the
dual isotope trend expected for DH/HY suggests the occurrence of
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additional degradation processes of 1,1,1-TCA in groundwater. A
minor contribution of microbial cooxidation of 1,1,1-TCA via CeH
bond cleavage could be a feasible explanation according to the
isotope results and the aerobic conditions of the aquifer. Contrary to
1,1,1-TCA, the chlorine and carbon isotopic composition of TCE
suggest little degradation, which is in agreement with the aerobic
conditions and the product concentration analysis.

Considering the time scale of cost-efficient contaminant reme-
diation strategies like monitored natural attenuation, low rate
abiotic reactions such as DH/HY have the potential to contribute
significantly to 1,1,1-TCA attenuation in contaminated sites. How-
ever, low rate transformation processes are typically difficult to
monitor and to evaluate based on concentration measurements
only. This study shows that the dual CeCl isotope analysis is a
valuable tool to assess degradation pathways of 1,1,1-TCA in the
field. Such information is crucial to improve contaminant attenu-
ation estimates and to delineate adequate remediation strategies.
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