[en] This paper describes a stress–strain interpolation method to model the macroscopic anisotropic
elasto-plastic behavior of polycrystalline materials. Accurate analytical descriptions of yield loci derived from crystallographic texture [Int. J. Plasticity 19 (2003) 647; J. Phys. IV France 105 (2003) 39] are an interesting alternative to finite element models, where the macroscopic
stress is provided by an averaging of microscopic stresses computed on a set of representative crystallites [Acta Metal 22 (1985) 923; Int. J. Plasticity 5 (1989) 67]. The parameters of the analytical functions modeling the yield locus are identified by comparison with a high number of stress tensors computed, for instance, by the well-known Taylor model [J. Inst. Metal 62 (1938) 307]. This identification method depends on the crystallographic texture and should be applied each time that the plastic strain has induced a significant texture evolution. The stress–strain interpolation method accurately describes the anisotropic material behavior in a narrow stress direction defined by only five stress points. The cost of texture updating is then greatly reduced compared to a full analytical function of the yield locus. After the mathematical description of the stress–strain interpolation method, its validity is demonstrated on two non-radial strain paths. The simulations of a deep drawing experiment allow comparing model predictions and measurements. Accuracy and CPU time of the interpolation stress–strain method are judged against two other models, respectively based on a complete analytical yield locus and on the averaging of crystallite stresses.
Disciplines :
Materials science & engineering
Author, co-author :
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Duchene, Laurent ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Département Argenco : Secteur MS2F
Language :
English
Title :
Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model
Publication date :
2004
Journal title :
International Journal of Plasticity
ISSN :
0749-6419
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
Aifantis E.C. The physics of plastic deformations. Int. J. Plasticity. 3:1987;211-247.
Anand L., Kothari M. A computational procedure for rate independent crystal plasticity. J. Mech. Phys. Solids. 44(4):1996;525-558.
Anand, L., Balasubramanian S., Kothari, M., 1997. Constitutive modeling of polycrystalline metals at large strains: application to deformation processing, large plastic deformation of crystalline aggregates. In: Teodosiu (Ed.), International Centre for Mechanical Sciences, CISM Courses and Lectures 376. Springer, pp. 109-172.
Arminjon M., Bacroix B., Imbault D., Raphanel J.K. A fourth-order plastic potential for anisotropic metals and its analytical calculation from texture function. Acta Mechanica. 107:1994;33-51.
Asaro R.J., Needleman A. Texture development and strain hardening in rate dependent polycrystals. Acta Metallurgica. 33:1985;923-953.
Beaudoin A.J., Dawson P.R., Mathur K.K., Kocks U.F. A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking. Int. J. Plasticity. 11(5):1995;501-521.
Berveiller M., Zaoui A. An extension of the self-consistent scheme to plastically-flowing polycrystals, J. Mech. Phys. Solids. 26(5-6):1978;325-344.
Bouvier S., Teodosiu C., Haddadi H., Tabacaru V. Anisotropic work-hardening behaviour of structural steels and aluminum alloys at large strains. J. Phys IV France. 105:2003;215-222.
Cela J.M. Library CAESAR. 2001;Centro Europeo de Paralelismo de Barcelona, Barcelona.
Charlier, R., Cescotto, S., 1988. Modélisation du phénomène de contact unilatéral avec frottement dans un contexte de grande déformation (special issue). J. Theoret. Appl. Mech., 7(Suppl. 1).
Chastel, Y., Loge, R., Perrin, M., Lamy, V., Zaefferer, S., 1998. Microscopic and macroscopic length scales in hot extrusion of Zircaloy 4. In: Chenot, J.L., Agassant, J.F., Montmitonnet, P., Vergnes, B., Billon, N., (Eds.), Proceedings of the First ESAFORM Conference on Material Forming (CEMEF CNRS UMR 7635), p. 37.
Crumbach, M., Pomana, G., Wagner, P., Gottstein, G. 2001a. A Taylor type deformation texture model considering grain interaction and material properties. Part I - fundamentals. In: Gottstein G., Molodov D.A., (Eds), Recrystallization and Grain Growth, Proc. of the First Joint Int. Conf. Springer-Verlag.
Crumbach, M., Pomana, G., Wagner, P., Gottstein, G. 2001b. A Taylor type deformation texture model considering grain interaction and material properties. Part II - experimental validation and coupling to FEM. In: Gottstein G., Molodov D.A., (Eds), Recrystallization and Grain Growth, Proc. First Joint Int. Conf. Springer-Verlag.
Darrieulat M., Piot D. A method of generating analytical yield surfaces of crystalline materials. Int. J. Plasticity. 12(10):1996;1221-1240.
Darrieulat M., Montheillet F. A texture based continuum approach for predicting the plastic behavior of rolled sheet. Int. J. Plasticity. 19(4):2003;517-546.
Delanny L., Kalidindi S.R., Van Houtte P. Prediction of intergranular strains in cubic metals using a multisite elastic-plastic model. Acta Mater. 50:2002;5127-5138.
de Montleau, P., Cela, J.M., Moto Mpong, S., Godinas, A., 2002. A parallel computing model for the acceleration of a finite element software. In: Zima, H.P, Joe, K., Sato, M., Seo, Y. Shimasaki, M., (Eds), 4th Int. Symp. on High Performance Computing, Lecture Notes in Computer Science 2327. Springer, pp. 449-456.
Duchêne, L., Godinas, A., Habraken, A. M., 1999. Metal plastic behaviour linked to texture analysis and FE method. In: Gélin, J.C., Picart, P., (Eds.), Proc. 4th Int. Conf.: NUMISHEET'99. University of Franche-Comté, pp. 97-102.
Duchêne L., Godinas A., Cescotto S., Habraken A.M. Texture evolution during deep-drawing processes. J. Materials Processing Technology. 125-126:2002;110-118.
Duchêne, L., 2002. FEM Study of Metal Sheets with a Texture Based, Local Description of the Yield Locus. PhD Thesis, University of Liège.
Elbououni S., Bourgeois S., Débordes O., Dogui A. Simulation by periodic homogenization of the behavior of polycrystalline materials in large elastoplastic transformations. J. Phys. IV France. 105:2003;123-130.
Eshelby J.D. The determination of the elastic field of an ellipsoæ̈dal inclusion and related problems. Proc. Roy. Soc. London. A241:1957;376-396.
Evers L.P., Parks D.M., Brekelmans W.A.M., Geers M.G.D. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solids. 50:2002;2403-2424.
Garmestani H., Kalidindi S.R., Williams L., Bacaltchuk C.M., Fountain C., Lee E.W., Es-Sai O.S. Modeling the evolution of anisotropy in AL-LI alloys. application to AL-Li 2090-T8E41 Int. J. Plasticity. 18:2002;1373-1393.
Geers, M.G.D., Kouznetsova, V., Brekelmans, W.A.M., 2000. Constitutive approaches for the multi-level analysis of the mechanics of microstructures. In: 5th National Congress on Theoretical and Applied Mechanics, Louvain-La-Neuve, 23-24 May 2000, pp. 179-182.
Gilormini P., Liu Y., Ponte Castañeda P. Application of the variational self-consistent model to the deformation textures of titanium. Int. J. Forming Processes. 5(2-4):2002;327-336.
Habraken A.M., Cescotto S. Contact between deformable solids, the fully coupled approach. Mathematical and Computer Modelling. 28(4-8):1998;153-169.
Hill R. A theory of the yielding and plastic flow of anisotropic materials. Proc. Royal Soc. London. A193:1948;281-297.
Hoferlin E., Van Bael A., Van Houtte P., Teodosiu C. An accurate model of texture and strain-path induced anisotropy. Gélin J.C., Picart P. Proc. of the 4th Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Forming Processes. 1999;91-96 University of Franche Comté and ENSMM Besançon, Burs.
Hoferlin, E., 2001. Incorporation of an Accurate Model of Texture and Strain-path Induced Anisotropy in Simulations of Sheet Metal Forming. PhD Thesis Katholieke Universiteit, Leuven.
Imbault D., Arminjon M. Theoretical and Numerical Study of the Initial and Induced Plastic Anisotropy of Steel Sheets, Using a Texture-based Methodology. Final Report of Contract Univ. J. Fourier No. 17191401. 1993;Laboratoire 3S, Université Joseph Fourier, France.
Kalidindi S.R., Anand L. Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J. Mech. Phys. Solids. 42(3):1994;459-490.
Kalidindi S.R. Modeling anisotropic hardening and deformation textures in low stacking fault energy fcc metals. Int. J. Plasticity. 17:2001;837-860.
Kallend J.S., Kocks U.F., Rollett A.D., Wenk H.R. popLA - an integrated software system for texture analysis. Text. Microstruct. 14-18:1991;1203-1208.
Khan A.S., Cheng P. An anisotropic elastic-plastic constitutive model for single and polycrystalline materials. I - theoretical developments. Int. J. Plasticity. 12(2):1996;147-162.
Khan A.S., Cheng P. An anisotropic elastic-plastic constitutive model for single and polycrystalline materials. II - experiments and predictions concerning thin-walled tubular OFHC copper. Int. J. Plasticity. 14(1-3):1998;209-226.
Kröner E. Zur plastischen Verformung des Vielkristalls. Acta Metall. 9:1961;155-161.
Lebensohn R.A., Tome C.N. A self-consistant anisotropic approach for the simulation of plastic deformation and texture development of polycrystals. application to zirconium alloys Acta Metall. Mater. 41:1993;2611-2624.
Lequeu Ph., Gilormini P., Montheillet F., Bacroix B., Jonas J.J. Yield surfaces for textured polycrystals, II. Analytical approach. Acta Metall. 35(5):1987;1159-1174.
Li, K.P., Cescotto, S., Jetteur, P., 1992. An element with hourglass control for the large deformation analysis in three dimensions. In: Owen, D.R.J, Onate, E., Hinton, E. (Eds), Computational Plasticity, Fundamentals and Applications. Pineridge Press, Swansea.
Li S., Hoferlin E., Van Bael A., Van Houtte P. Application of a texture-based plastic potential in earing prediction of an IF steel. Adv. Engng. Mater. 3(12):2001;990-994.
Li S., Hoferlin E., Van Bael A., Van Houtte P., Teodosiu C. Finite element modeling of plastic anisotropy induced by texture and strain-path change. Int. J. Plasticity. 19:2003;647-674.
Masson R., Zaoui A. Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials. J. Mech. Phys. Solids. 47:1999;1543-1568.
Mathur K.K., Dawson P.R. On the development of crystallographic texture in bulk forming processes. Int. J. Plasticity. 5:1989;67-94.
Maudlin P.J., Wright S.I., Kocks U.F., Sahota M.S. An application of multisurface plasticity theory. yield surfaces of textured materials Acta Mater. 44:1996;4027-4032.
Miehe C., Schröder J., Schotte J. Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. Comp. Met. App. Mech. Eng. 171:1999;387-418.
Miller M.P., Mc Dowell D.L. Modeling large strain multiaxial effects in FCC polycrystals. Int. J. Plasticity. 12(7):1996;875-902.
Molinari A., Canova G.R., Ahzi S. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35:1987;2983-2994.
Molinari, A., 1997. Deformation Process Simulations Using Polycrystal Plasticity, Large plastic deformation of crystalline aggregates. In: Teodosiu (Ed.), International Centre for Mechanical Sciences, CISM Courses and Lectures 376. Springer, pp. 173-246.
Molinari A., Ahzi S., Kouddane R. On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mechanics of Materials. 26:1997;43-62.
Moto Mpong, S., de Montleau, P., Godinas, A., Habraken, AM., 2002. Acceleration of finite element analysis by parallel processing. In: Pietrzyk, M., Mitura, Z., Kaczmar, J., (Eds.), Proc. of the 5th International ESAFORM Conference on Material Forming. Akademia Gorniczo-Hutnicza, Krakow, pp. 47-50.
Munhoven, S., Habraken, A.M., Van Bael A., Winters J., 1996. Anisotropic finite element analysis based on texture. In: Lee, L.K., Kinzel, G.L., Wagoner, R.H., (Eds.), Proc. of the 3rd Int. Conf.: Numerical Simulation of 3-D Sheet Metal Forming Processes. NUMISHEET'96, The Ohio State University, Columbus, pp. 112-119.
Munhoven, S., Habraken, A.M., Radu, J.P., 1997. Anisotropic plasticity based on crystallographic texture. In: Proceedings of the 4ème Congrès National Belge de Mécanique théorique et appliquée, Leuven, pp. 233-236.
Nakamachi E., Hiraiwa K., Morimoto H., Harimoto M. Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification. Int. J. Plasticity. 16:2000;1419-1441.
Nakamachi E., Xie C.L., Morimoto H., Morita K., Yokoyama N. Formability assessment of FCC aluminium alloy sheet by using elastic:crystalline viscoplastic finite element analysis. Int. J. Plasticity. 18:2002;617-632.
Neale K.W. Use of Crystal Plasticity in Metal Forming Simulations. Int. J. Mech. Sci. 35(12):1993;1053-1063.
Ning J., Aifantis E.C. Anisotropic yield and plastic flow of polycrystalline solids. Int. J. Plasticity. 12(10):1996;1221-1240.
Parks D.M., Ahzi S. Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems. J. Mech. Phys. Solids. 38(5):1990;701-724.
Peeters B., Hoferlin E., Van Houtte P., Aernoudt E. Assessment of crystal plasticity based calculation of lattice spin of polycrystalline metals for FE implementation. Int. J. Plasticity. 17:2001;819-836.
Ponthot, J.P., 1995. Mécanique des milieux continus solides en grandes transformations et traitement unifié par la méthode des éléments finis. PhD Thesis, University of Liège.
Ponthot J.P. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int. J. Plasticity. 18(1):2002;91-126.
Prantil V.C., James T.J., Dawson P.R. Modeling deformation induced texture in titanium using analytical solutions for constrained single crystal response. J. Mech. Phys. Solids. 43(8):1995;1283-1302.
Sabar H., Berveiller M., Favier V., Berbenni S. A new class of micro-macro models for elastic-viscoplastic heterogeneous materials. Int. J. Solids Struct. 39:2002;3257-3276.
Smit R.J.M., Brekelmans W.A.M., Meijer H.E.H. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comp. Meth. Appl. Mech. Eng. 155:1998;181-192.
Taylor G.I. Plastic strains in metals. J. Inst. Metals. 62:1938;307-324.
Teodosiu C., Hu Z. Evolution of the intragranular microstructure at moderate and large strains: modeling and computational significance. Shen S.F., Dawson P.R. Simulation of Materials Processing: Theory, Methods and Applications. 1995;173-182 Balkema, Rotterdam.
Teodosiu, C., Hu, Z., 1998. Microstructure in the continuum modelling of plastic anisotropy. In: Carstensen, J.V., Leffers, T., (Eds.) Proceedings of the 19th Riso Int. Symp. on Materials Science: Modelling of Structure and Mechanics of Materials from Microscale to Products.
Tóth L.S., Van Houtte P. Discretization techniques for orientation distribution functions. Textures and Microstructures. 19:1992;229-244.
Tóth L.S., Molinari A. Tuning a self consistent viscoplastic model by finite element results - II. Application to torsion textures. Acta Metall. Mater. 42(7):1994;2459-2466.
Tóth L.S., Dudzinski D., Molinari A. Forming limit predictions with the perturbation method using stress potential functions of polycrystal viscoplasticity. Int. J. Mech. Sci. 38:1996;805-824.
Van Bael, A., 1994 Anisotropic Yield Loci Derived from Crystallographic Data and Their Application in Finite Element Simulations of Plastic Forming Processes. PhD Thesis, Katholieke Universiteit, Leuven.
Van Bael, A., Winters, J., Van Houtte, P., 1996. A semi-analytical approach for incorporating crystallographic data into elasto-plastic finite element formulations. In: Liang Z., Zuo L., Chu Y., (Eds.), Textures of Materials, Proceedings of the 11th Int. Conf. on Textures of Materials, Vol. 1, ICOTOM-11, 16-20 Sept.
Van Bael A., Van Houtte P. Convex fourth and sixth order plastic potentials derived from crystallographic texture. J. Phys. IV France. 105:2003;39-46.
Van Houtte P. A comprehensive mathematical formulation of an extended Taylor-Bishop-Hill model featuring relaxed constraints, the Renouard- Wintenberger theory and a strain rate sensitivity model. Textures and Microstructures. 8-9:1988;313-350.
Van Houtte P. Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials. Int. J. Plasticity. 10:1994;719-748.
Van Houtte P. The MTM-FHM Software System, Version 2. 1994;Katholieke Universiteit, Leuven.
Van Houtte P. Fast calculation of average Taylor factors and Mandel spin for all possible strain modes. Int. J. Plasticity. 17:2001;807-818.
Van Houtte P. ODFTAY Software, Part of the Latest Version of MTM-FHM Software System. 2002;Katholieke Universiteit, Leuven.
Van Houtte P., Delannay L., Kalidindi S.R. Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Int. J Plasticity. 18:2002;359-377.
Winters, J., 1996. Implementation of Texture-based Yield Locus into an Elastoplastic Finite Element Code. PhD Thesis, KUL, Leuven.
Zhu Y.Y., Cescotto S. Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method. Comp. Meth. Appl. Mech. Eng. 129:1996;177-209.