Paper published in a book (Scientific congresses and symposiums)
Decision Making from Confidence Measurement on the Reward Growth using Supervised Learning: A Study Intended for Large-Scale Video Games
Taralla, David; Qiu, Zixiao; Sutera, Antonio et al.
2016In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2
Peer reviewed
 

Files


Full Text
camready.pdf
Author postprint (481.1 kB)
Download
Annexes
poster.pdf
Publisher postprint (458.26 kB)
Poster
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Artificial Intelligence; Decision Making; Video Games; Hearthstone; Supervised Learning; ExtraTrees
Abstract :
[en] Video games have become more and more complex over the past decades. Today, players wander in visually and option- rich environments, and each choice they make, at any given time, can have a combinatorial number of consequences. However, modern artificial intelligence is still usually hard-coded, and as the game environments become increasingly complex, this hard-coding becomes exponentially difficult. Recent research works started to let video game autonomous agents learn instead of being taught, which makes them more intelligent. This contribution falls under this very perspective, as it aims to develop a framework for the generic design of autonomous agents for large-scale video games. We consider a class of games for which expert knowledge is available to define a state quality function that gives how close an agent is from its objective. The decision making policy is based on a confidence measurement on the growth of the state quality function, computed by a supervised learning classification model. Additionally, no stratagems aiming to reduce the action space are used. As a proof of concept, we tested this simple approach on the collectible card game Hearthstone and obtained encouraging results.
Disciplines :
Computer science
Author, co-author :
Taralla, David ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Qiu, Zixiao ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Sutera, Antonio ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Fonteneau, Raphaël ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Ernst, Damien  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Language :
English
Title :
Decision Making from Confidence Measurement on the Reward Growth using Supervised Learning: A Study Intended for Large-Scale Video Games
Publication date :
February 2016
Event name :
8th International Conference on Agents and Artificial Intelligence
Event organizer :
INSTICC - Institute for Systems and Technologies of Information, Control and Communication
Event place :
Rome, Italy
Event date :
24-26 February 2016
Audience :
International
Main work title :
Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2
ISBN/EAN :
978-989-758-172-4
Pages :
264-271
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture [BE]
Available on ORBi :
since 15 January 2016

Statistics


Number of views
793 (32 by ULiège)
Number of downloads
600 (16 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
1

Bibliography


Similar publications



Contact ORBi