Article (Scientific journals)
Towards Generic Image Classification using Tree-based Learning: an Extensive Empirical Study
Marée, Raphaël; Geurts, Pierre; Wehenkel, Louis
2016In Pattern Recognition Letters, 74 (15), p. 17-23
Peer Reviewed verified by ORBi
 

Files


Full Text
maree-prletters2016_accepted.pdf
Author postprint (887.53 kB)
Download
Annexes
maree-prletters2016-supplementary-tables.pdf
Publisher postprint (1.59 MB)
Supplementary data
Download

This is the author post-print (ie. final draft post-refereeing) accepted version of the paper. Publisher (Elsevier) version will be available in Pattern Recognition Letters. http://www.journals.elsevier.com/pattern-recognition-letters/


All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] This paper considers the general problem of image classification without using any prior knowledge about image classes. We study variants of a method based on supervised learning whose common steps are the extraction of random subwindows described by raw pixel intensity values and the use of ensemble of extremely randomized trees to directly classify images or to learn image features. The influence of method parameters and variants is thoroughly evaluated so as to provide baselines and guidelines for future studies. Detailed results are provided on 80 publicly available datasets that depict very diverse types of images (more than 3800 image classes and over 1.5 million images).
Disciplines :
Computer science
Author, co-author :
Marée, Raphaël  ;  Université de Liège > GIGA-Research
Geurts, Pierre  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Wehenkel, Louis  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Towards Generic Image Classification using Tree-based Learning: an Extensive Empirical Study
Publication date :
2016
Journal title :
Pattern Recognition Letters
ISSN :
0167-8655
Publisher :
Elsevier, Netherlands
Volume :
74
Issue :
15
Pages :
17-23
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06
Available on ORBi :
since 14 January 2016

Statistics


Number of views
573 (78 by ULiège)
Number of downloads
819 (49 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
6
OpenCitations
 
12
OpenAlex citations
 
15

Bibliography


Similar publications



Contact ORBi