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Abstract

This paper considers the general problem of image classification without using any prior knowledge about image

classes. We study variants of a method based on supervised learning whose common steps are the extraction of

random subwindows described by raw pixel intensity values and the use of ensemble of extremely randomized trees

to directly classify images or to learn image features. The influence of method parameters and variants is thoroughly

evaluated so as to provide baselines and guidelines for future studies. Detailed results are provided on 80 publicly

available datasets that depict very diverse types of images (more than 3800 image classes and over 1.5 million images).
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1. Introduction

The aim of supervised image classification is to auto-

matically build computerized models able to predict ac-

curately the class (among predefined ones) of new im-

ages, once trained from a set of labelled images. In the

real world, this generic problem encompasses well-known

tasks such as the automatic recognition of images of hand-

written characters, faces, cells, and road signs, to name

but a few.

Since the early days of computer vision practice, when

a researcher approaches a new image classification task,

he or she often develops a dedicated algorithm to imple-

ment human prior knowledge as a sequence of specific op-

erations, also known as a hand-crafted approach. Such an

approach often involves the design and calculation of tai-

lored filters and features capturing expected invariant im-

age characteristics. In our preferred field of application,
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life science imaging, although several specific works have

proved effective, the design choices are rarely straight-

forward hence such a strategy requires a lot of research

and development efforts for each specific problem, and it

might require major adjustments when parameters of the

problem vary (e.g. sample preparation protocols, imaging

modality, phenotypes to recognize, . . . ). In other words,

this engineering approach does not scale well as there are

hundreds of thousands of biological entities that can be

screened using many different sample preparation tech-

niques and imaging modalities. Hence, scientific stud-

ies are often limited in scale, or still partially performed

by hand (e.g. 50 millions of galaxies were manually la-

beled into morphological classes by almost 150000 hu-

mans within one year through the GalaxyZoo web-based

project (Lintott et al., 2008)), while others required very

large computing infrastructures because they relied on

dense feature computations (e.g. computers of the mem-

bers of the Help Conquer Cancer project have contributed

over 100 CPU-millenia for the automated classification of

tens of millions of protein crystallization-trial images at a

rate of 55 CPU-years per day (Kotseruba et al., 2012)).
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1.1. This work

Following and extending previous works (Marée et al.,

2003, 2004, 2005, 2007), we consider the generic problem

of supervised image classification without any preconcep-

tion about image classes, ie. it encompasses the recogni-

tion of numerous types of images under various image ac-

quisition conditions. Indeed, with the design of a general-

purpose yet simple and easily applicable image classifier

in mind, we proposed earlier an appearance-based, learn-

ing method, relying on dense random subwindow extrac-

tion in images, their description by raw pixel values, and

the use of ensembles of extremely randomized trees to

classify these subwindows hence images. Despite its con-

ceptual simplicity and its rather low run-time complex-

ity, it yielded interesting results on a few datasets. Subse-

quently, variants of the method were proposed in (Moos-

mann et al., 2008; Marée et al., 2009; Dumont et al., 2009;

Stern et al., 2011) for object categorization, image seg-

mentation, interest point detection, and content-based im-

age retrieval.

In this paper, we extend and thoroughly evaluate our

generic framework for image classification. Our contri-

butions are as follows:

• While the main building blocks of the framework,

subwindows extraction and extremely randomized

trees, have been proposed in our earlier research,

several algorithmic variants have not yet been con-

sidered and deserve to be tested. In particular, ex-

tending the work of (Moosmann et al., 2008), we

explore in this paper several novel variants of the

feature learning approach, corresponding to differ-

ent ways to derive features from trees. We also con-

sider yet unexplored parameter ranges (e.g., subwin-

dow size intervals) and several simple pre-processing

strategies (e.g., filters), which both turned out to be

very beneficial on several datasets. These new algo-

rithmic variants therefore greatly extend the range of

image classification tasks that can be addressed by

our framework and improve its generality.

• To assess our framework, we perform an extensive,

systematic study of its performances on 80 publicly-

available datasets (among which 25 bioimaging

datasets). By conducting such a large-scale study,

we are able to characterize the performances of the

method and its recent variants, to study rigourously

the influence of its parameters and classification

schemes, to bring out the most influential design

choices, and to draw general guidelines for future use

so as to speed its application on new problems.

• To the best of our knowledge, no other image clas-

sification method has been evaluated so extensively.

We deeply believe that generic methods can only be

fully and fairly assessed by confronting them to sev-

eral representative tasks and by extensively studying

the influence of their parameters. By summarizing

publicly available databases and by providing our

positive and negative results, our hope is thus also

to foster research in generic methods, by encourag-

ing other researchers to evaluate and compare their

methods on a wide range of imagery.

2. Experimental setup

We work with a large variety of datasets from many

application domains. Our hypothesis is that by consider-

ing the image classification problem as a whole, it will

possible to derive trends that are generally valuable, ie.

applicable in several areas. For example, observations

derived from experiments related to the recognition of

traffic signs (captured with onboard cameras) or galaxies

(captured during wide-field sky surveys) might be help-

ful for the recognition of cells (captured by microscopes)

as these datasets are sharing some essential characteris-

tics (they consist in different classes of shapes and they

exhibit illumination and noise variations due to the ac-

quisition process). Similarly, observations derived from

material classification datasets might be of interest for bi-

ological tissue recognition (as their images have textured

patterns).

2.1. Datasets and evaluation criteria

Our experimental setup comprises 80 image datasets

that were previously published and are publicly and freely

available. They sum up roughly to 1.5 million images de-

picting approximately 3850 distinct classes. The choice

of datasets was made a priori and independently of the

results obtained with our method. More details about

these datasets are given in Supplementary Material. In

particular, a summary of their characteristics is given in
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Supplementary Table I, and an overview of image classes

for all datasets is given in Supplementary Figures 1, 2,

3, and 4. Images were acquired worldwide, in controlled

or uncontrolled conditions, using professional equipments

in laboratory settings, individuals’ digital camera in the

real-world, various biomedical imaging equipements (flu-

orescence or brightfield microscopes, plain film radiog-

raphy, etc.), robotic telescopes, synthetic aperture radars,

etc. For a given dataset, image classes possibly exhibit

subtle or prominent changes in their appearance due to

various sources and levels of variations including pos-

sible changes in position, illumination, scale, and view-

point, and/or presence of background clutter, occlusions,

and noise. Moreover, either significant intra-class vari-

ations or high similarity between distinct classes could

be present. Several of these datasets are synthetic and

therefore variations are controlled (e.g. backgrounds are

uniform) and well characterized, while many others con-

tains real-world images so variations are mixed. Note

that we only included in our experiments two widely used

face datasets among tens of existing ones, given that face

databases were recently summarized and evaluated thor-

oughly (Huang et al., 2007; Shamir, 2008; Pinto et al.,

2008). Also, we did not include the Pascal VOC challenge

datasets (Everingham et al., 2010) whose evaluation crite-

ria (precision/recall curves for each object class) does not

fit well into our evaluation framework (see below).

Our evaluation protocols are summarized in Supple-

mentary Table I. Our evaluation metric is the misclassi-

fication error rate evaluated on independant test images.

If a precise dataset protocol was defined in the literature

and was adopted in several papers, we also used it. How-

ever, for many datasets (e.g. those where the protocol was

not rigourously described, or different between papers, or

where the number of test images was rather small), we

performed 10 runs where each run uses a certain num-

ber of images randomly drawn for the learning phase (e.g.

80% of the total number of images) and the remaining im-

ages for the testing phase (e.g. 20%). The misclassifica-

tion error rate is then averaged over all the test sets which

allows to have a reliable insight into the effects of method

parameters.

3. Methods

We present the two key components of our image clas-

sification variants. The method involves the extraction of

random subwindows described by raw pixel values and

the use of ensemble of extremely randomized trees by dif-

ferent means.

3.1. Random subwindows

We introduced previously different random subwindow

sampling schemes (Marée et al., 2003, 2005, 2007). Ran-

dom subwindows are square patches of random sizes ex-

tracted at random positions within images. They are

subsequently resized to a fixed patch size whose pixels

are used as input of the machine learning algorithm (see

next subsection). The resizing step improved robustness

to scale changes and it allows one to use generic ma-

chine learning methods that work with fixed-size feature

vectors. This procedure also introduces in the training

set subwindows with slight pixel intensity variabilities

through multiple over- or sub-sampling, a process that can

help the algorithm learn to be more robust to such changes

that could occur naturally in unseen test images. Variants

also include the activation of right and straight angle rota-

tions and mirroring to subwindows, so that the model can

learn to be robust to rotations.

In this work, we first study systematically the influence

of subwindow size intervals and the way random subwin-

dows are encoded on all 80 datasets. Default tests are

made using a total of Nls = 1 million training subwin-

dows (previous works (Marée et al., 2003, 2005, 2007)

used only one hundred thousand subwindows) while a few

others more intensive tests are performed with up to 50

millions subwindows. For a given dataset, the same num-

ber of subwindows are randomly drawn from each image,

it equals Nls/Nimg where Nimg is the number of training

images. One can see subwindows as pixel context, sup-

port regions, or receptive fields of different sizes/scales

whose intervals are systematically tested: we consider

single pixels 1 × 1 as baseline, and 13 different config-

urations of square subwindows ranging from small image

regions [0% − 10%] to large ones [90% − 100%], and in-

cluding the default unconstrained size [0% − 100%] used

in (Marée et al., 2005). Constraining sizes to e.g. [25% −

50%], means that the size of each subwindow is randomly

choosen between 25% and 50% of min(width, height) in
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each image, then the position is randomly choosen in or-

der to guarantee square subwindows are always fully con-

tained within images. Note that in configurations with

zero minimum ([0% − x%]), the minimum size is actu-

ally 1 × 1. For all configurations (except baseline 1 × 1

where no resizing is performed), each subwindow is sub-

sequently resized by bilinear interpolation to a patch of

fixed size (8×8, 16×16 (default) or 32×32) and its pixel

values encoded in HSV or graylevels are used as the sub-

window descriptors. Whereas more elaborated or specific

sampling schemes could be designed and might improve

results on specific datasets (e.g.: localized sampling for

datasets where positions of patterns of interest are known,

rectangular subwindows for elongated objects, adaptive

sampling (Moosmann et al., 2008), . . . ), we want here to

investigate how far a basic, systematic, and generic ran-

dom sampling could lead us in terms of accuracy on many

datasets so as to provide baselines before developing more

complex sampling schemes.

3.2. Extremely Randomized Trees for direct image classi-

fication or for feature learning

Ensembles of randomized trees are increasingly used in

machine learning and computer vision (see Criminisi and

Shotton, 2013, for their recent developments in computer

vision and medical imaging applications).

The Extra-Trees algorithm was proposed in (Geurts

et al., 2006) where the reader can find a precise algorithm

description. In this work, we evaluated the use of ensem-

ble of extremely randomized trees by two different means:

as direct classifiers, ET-DIC, or as feature learners, ET-

FL. As we observed overall better performances when

they are used as feature learners we only describe here this

variant while the other variant is described in Supplemen-

tary Material. In the ET-FL classification scheme, instead

of retaining probability estimates at terminal nodes and

use trees to perform subwindow classification, and hence

image classification, each terminal node (leaf) of a tree is

considered as a “codebook” or “visual word”. This lat-

ter approach is inspired by previous works using visual

codebooks. In this setting, after propagating subwindows

down the trees, each image is described by a single global

feature vector which dimensionality equals the number of

terminal nodes in the ensemble of trees, and where fea-

tures are quantitative frequency values (they correspond

to the number of image subwindows that reach a given

terminal node divided by the total number of subwindows

extracted in the image, i.e. a bin value is included in [0,1]

and the sum over all terminal nodes equals to 1 in a given

tree for a given image). Such a “bag-of-features” repre-

sentation can then be fed into any classifier to build the

final image classification model. In our case, we use a

linear support vector machine classifier, as illustrated by

Figure 1. To predict the class of a new image, its random

subwindows are propagated into the ensemble of trees to

build its global feature vector subsequently classified by

the SVM classifier.

For both variants, we study systematically on all 80

datasets the influence of the minimum node sample size

nmin by picking a few of its possible values (from 1 to

1000 in ET-DIC and from 1 to 50000 in ET-FL), the num-

ber of random tests k (from 1 to the maximum number of

input variables), and the number of trees T (from 1 to 20

in ET-DIC and from 1 to 40 in ET-FL although more ex-

tensive tests use up to T = 1000 trees). In ET-FL, we also

study systematically the influence of the encoding of the

global feature vector: We evaluate our quantitative fre-

quency representation as well as binary encoding (where

a feature equals to 1 if at least one of its subwindow was

propagated to that terminal node, and 0 otherwise), either

only at tree terminal nodes or in all the tree nodes (internal

and terminal nodes). We use in ET-FL a linear SVM clas-

sifier to perform the final classification whose parameters

were set to default values (see Supplementary Material for

implementation details).

4. Results

4.1. Overall results

Regarding overall performances, we achieve more than

80% recognition rate for 52 datasets among 80, and more

than 90% recognition rate for 30 datasets (see Figure

2). However, our results are much lower for some other

datasets or recently published ones that exhibit a lot of

variabilities. In particular we achieve less than 50%

recognition rate on 13 datasets, most of them containing

images from the web that depict coarse-grained categories

(natural scenes or various object/face classes with com-

plex backgrounds and strong intensity and illumination

changes). Overall, the mean of the best error rate com-

puted over all 80 datasets is 22.22%. Interestingly, on the
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Figure 1: Left: A single tree induced from a training set of random subwindows, using node tests with single pixel thresholding, for the ET-FL

scheme. Right: An ensemble of T trees, the derived, quantitative frequency global representation for training images, and training of a final linear

SVM classifier in ET-FL mode.
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subset of 25 bioimaging datasets, the mean best error rate

is 12.03% (an overview of these latter datasets is given

in Figure 5.2). Life scientists working with images with

visual appearances similar to one of these datasets should

consider applying as a first try our classification algorithm

with parameter values similar to those that yields the best

recognition rate on this dataset (See Supplementary Ma-

terial for detailed results on each dataset).

4.1.1. Comparison of ET-DIC and ET-FL

ET-DIC is slightly better for a quarter of the datasets,

including particular object identification datasets in con-

trolled conditions, but ET-FL yields better results on oth-

ers (60 datasets among 80). These results show that on

a majority of datasets, the construction of a global im-

age representation based on tree terminal node frequen-

cies subsequently classified by a linear classifier (ET-FL)

yields better results compared to the direct classification

of individual subwindows (ET-DIC). Although individ-

ual subwindows can be strongly predictive with respect

to the class of the image they come from (when ET-DIC

is performing well), ET-FL allows to describe images by

a higher-level representation than raw pixels. It learns im-

age features (from small or large patterns), as each tree

leaf contains subwindows that fulfills a serie of tests on

pixel intensities in (small to large) subwindows. The fi-

nal classification model that combines such feature “re-

sponses” is more discriminative than the combination of

individual predictions for every subwindows (ET-DIC).

4.2. Parameter influence study

The influence of all parameter values was thoroughly

evaluated for both variants. Our main results regarding

the best method (ET-FL) parameter influences are sum-

marized in Figure 3 and summarized below (Detailed re-

sults are available in Supplementary Tables II to XII).

Regarding the random subwindow extraction scheme,

the most influential parameter is the size interval of sub-

windows that allows the method to be adapted to very dif-

ferent types of problems. The optimal sizes could be very

small or very large proportionally to image sizes. We ob-

served that small subwindows allow to capture fine de-

tails and generally perform best for images with highly

repeatable patterns i.e. textured images (e.g. histolog-

ical tissues, man-made materials, or assays with popu-

lations of cells, see Figure 4), while larger subwindows

Figure 3: Results averaged over all 80 datasets for ET-FL variant: First

column: Average of error rates for all datasets with subwindow size

intervals (1st row), image representation (2nd), number of random tests

(3rd), number of trees (4th), minimum node sample sizes (5th). Second

column: Number of datasets for which the parameter values yield the

best error rates. See Supplementary Tables II to XII for detailed results.
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Figure 2: Summary of the best error rate obtained for each dataset without optimizations, gathered from Supplementary Tables II to XII. Illustrative

image examples from ∼ 50 datasets are positionned (approximately) according to dataset recognition performances. Note that some results (e.g. on

CIFAR-10, GTSRB, and IRMA-2005) are significantly improved using further optimizations, see Section 4.3 and Supplementary Table XIII.
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Figure 4: Several datasets for which smalller subwindow sizes yield

lowest error rates.

yield better results for shape-like datasets (e.g. red-blood

cells, leaves, handwritten characters, and traffic signs, see

Figure ??). For these latter type of datasets, extracting

large subwindows augments the training set with (small)

scale and translation variations, and allows models to di-

rectly capture global patterns. Concerning the number of

extracted subwindows, we observed a total of 1 million

training subwindows performs well, but using a denser

sampling can still improve results on several datasets.

In ET-FL variant, increasing the number of trees (hence

the number of features for the final linear classifier) up

to 40 brings improvement although the improvement is

not always important compared to using only 10 trees.

Trees should be pruned i.e. nmin value should be roughly

one thousandth of the total number of subwindows of

the training set (in order to build features that are not

too much specific), except for a few problems includ-

ing object identification tasks in controlled conditions (for

which specific features work best). Terminal quantitative

frequency yields better results than binary or hierachical

encoding. On average, the default value of the filtering

parameter (equals to the square root of the total number

of pixels that describe a subwindow) achieves better re-

sults than unsupervised feature construction, but increas-

ing that parameter to higher values does not seem so im-

portant, although for several problems (e.g. noisy, shape-

like images) it is still beneficial to do so.

Figure 5: Several datasets for which larger subwindow sizes yield lowest

error rates.

4.3. Further optimizations

In practice, if the method does not achieve satisfac-

tory results on a specific problem, it is possible to fur-

ther optimize its parameters and implement slight algo-

rithm variations to get better results. Although this al-

ters somewhat the generality of the method, we believe

these optimizations (some requiring only a few lines of

codes) are simpler than designing a completely new, spe-

cific, approach. Although further work is needed to as-

sess if some of these variants could be generalized and

applied successfully on a larger number of datasets, Sup-

plementary Table XIII present promising results obtained

with several (combinations of) simple optimizations for a

dozen datasets. These optimizations include extension of

parameter ranges (e.g. increase the number of trees), use

synthetic data (e.g. data augmentation by adding in the

training set right and straight angle rotated and mirrored

subwindows), normalization of random subwindow de-

scriptors (e.g. by substracting the mean and then dividing

by the standard deviation for each subwindow channel),

evaluation of different node tests in Extra-Trees (e.g. node

tests that threshold the difference of a pixel and one of its

8 direct neighbours), applying filters to original images

(e.g. using linear filters and spatial pooling operations),

adding statistical features to subwindow descriptors (e.g.

using features of (Orlov et al., 2008)). These optimiza-

tions and their evaluation are discussed in Supplementary
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Material.

5. Comparison with other methods

Without a centralized repository of results, gathering

state-of-the-art results from the wide computer vision lit-

erature for all the datasets included in our study could

hardly be up to date. To the best of our knowledge, no

other image classification method was evaluated on so

many datasets. We will therefore only draw general trends

from what we observed. Detailed comparisons for a sub-

set of datasets are provided in Supplementary Material.

First, we compared on several datasets our approach

with other approaches using Extremely Randomized

Trees. On a few datasets with fixed image sizes, we first

compared our approach to the direct application of Extra-

Trees without subwindow extraction, ie. where each im-

age is represented by a single input vector encoding all

its pixel values. Our results (see Supplementary Tables

XIV) were significantly better using our approaches based

on subwindow extraction, in particular on datasets where

small subwindows yield better results (e.g. on immunos-

taining patterns) but also on datasets when large subwin-

dows performed best. Compared to (Marée et al., 2005)

using unconstrained subwindow size intervals and ET-

DIC on a few datasets, we observe that adjusting param-

eters (such as the subwindow size intervals, the number

of subwindows, the number of random tests, and the clas-

sification scheme) can yield very important accuracy im-

provements. Compared to (Moosmann et al., 2008) that

uses ET-FL with binary encoding at terminal nodes and

used a fixed number of features (by post-pruning) on a

few object classes, we observed that quantitative encod-

ing and problem-dependent numbers of learned features

(from a few thousands up to millions of features) have a

significant influence on results.

Second, we observed the method often performs bet-

ter than previously published baselines used in original

publications presenting several datasets. This is partic-

ularly true for global approaches e.g. using classifiers

(nearest neighbor classifier with euclidian distance, logis-

tic regression, or SVMs) applied on down-sampled im-

ages (see Supplementary Table XV). It also sometimes

performs better than first specific methods developed once

new datasets were published, e.g. for a building recogni-

tion dataset, a sport categorization dataset, a leaf recog-

nition task, a dataset about land uses from overhead im-

agery, and several bioimaging datasets (See Supplemen-

tary Material). On several datasets, our approach is also

on par with, or better than, methods using application-

specific features (e.g. on galaxy recognition, leaves, ze-

brafish phenotypes, . . . ), and better than many other meth-

ods (e.g. proposed during international challenges), while

not reaching state-of-the-art performances on each and

every problem (e.g. on cells in immunofluorescence).

On several other problems (especially datasets with im-

ages from the web depicting e.g. wild animals, faces of

celebrities, or natural scenes or actions), our results us-

ing raw pixel values from original images are not satis-

fying. On most of these datasets, our approach without

optimizations yields worse results than GIST (Oliva and

Torralba, 2001), and it is also significantly inferior than

more elaborated approaches, e.g. methods combining nu-

merous image descriptors (Gehler and Nowozin, 2009),

or multi-stage (deep) architectures that combine various

steps of normalization, filtering and spatial pooling (Pinto

et al., 2009; Ciresan et al., 2012; Quattoni and A.Torralba,

2009; Xiao et al., 2010). On the web-scale object recog-

nition dataset on which we evaluated optimizations using

filtered images (see Section 4.3), our approach then be-

comes better than GIST (Ranzato et al., 2010) and also

slightly better than other multi-stage approaches e.g. tiled

convolutional neural networks (Le et al., 2010) and fac-

torized third-order Boltzmann Machines (Ranzato et al.,

2010), but still significantly inferior to the best known

method on this dataset (Ciresan et al., 2012). In addition,

we observed that on other problems (such as traffic sign

recognition, and synthetic images of object categories), it

seems not necessary to perform image filtering to be com-

petitive with a variety of multi-stage approaches. These

various results suggest that although deep learning is of-

ten presented as a unified framework (LeCun et al., 2015),

there are in fact plenty of “deep learning” architectures

and methods which yield very different recognition per-

formances when evaluated on various datasets. We pro-

vide a few additional comparisons in Supplementary Ma-

terial but we have considered that the comparison with

deep learning variants is well beyond the scope of this pa-

per.
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6. Guidelines

Given its good overall performance, we believe our ap-

proach is a very good off-the-shelf image classification

method. It will obviously not provide the best perfor-

mance on each and every problem but, without too much

tuning effort, it should give some good indication of the

performance one could expect for any new problem.

Summarizing the extensive analysis carried out in this

paper, we suggest to adopt the following procedure when

applying our method on a new image classification task:

• Without any prior knowledge about the problem at

hand, we suggest using the following default setting

of the method parameters: 1 million training sub-

windows encoded by 16 × 16 patches in HS V col-

orspace, 1000 subwindows per test image, ET-FL

mode with T = 10, k = 28, nmin = 1000, and termi-

nal frequency encoding. Regarding subwindow size

intervals, we suggest first trying three settings: small

(0% − 10%) subwindows, medium (25% − 50%),

large (75% − 100%) then refining size intervals ac-

cording to these first results. A better strategy could

also be obtained by deriving these sizes from the

most similar datasets to the one at hand in the pool of

80 datasets used in this paper (see supporting Tables

VII for the best subwindow parameter settings using

ET-FL on each problem).

• If the results obtained with default settings are not

satisfactory, we suggest then to try tuning some pa-

rameters. As discussed earlier, the number of trees

and the number of subwindows should be chosen

only taking into account the available computing

ressources (since the higher they are, the better). To

enrich the training set, we recommend to consider

data augmentation (rotation, mirroring) if the classes

are not orientation-dependent. As shown in Section

4, after subwindow size intervals which plays a ma-

jor role, the more problem specific parameters are the

filtering parameter k and first tuning efforts should be

focused on this parameter. Tuning nmin and switch-

ing to ET-DIC might also be explored eventually but,

given our experience, one should not expect a huge

improvement.

• Finally, if results are still not good enough, we sug-

gest to enrich subwindow feature descriptors by con-

sidering filtering images (with linear filters and spa-

tial pooling operations), or by extracting explicitely

new features. One could either rely on generic im-

age feature extractors (e.g. those extracted by Orlov

et al. (2008)) or on more problem specific feature ex-

tractors if such features can be derived from prior

knowledge.

Whether or not to go through these three steps is of course

application dependent.

7. Conclusions

This paper addressed the generic problem of supervised

image classification without any preconception about im-

age classes. An extensive empirical study has been con-

ducted to evaluate overall performances of variants of a

simple and brute-force method using random subwindows

extraction, raw pixel intensity descriptors, and extremely

randomized trees either to classify directly images or to

learn features.

While our method does not reach state-of-the-art re-

sults on each and every problem, it is rather easy to eval-

uate and it achieves good performances for diverse image

collections including images from real-word applications

that exhibit various factors of variations. We therefore

suggest it could be used as a first try on any new image

classification problem and we provided guidelines to do

so. We already successfully applied these guidelines and

variants of our approach in practical biomedical applica-

tions including (Delga et al., 2014; Jeanray et al., 2015).

Finally, a Python implementation of our algorithms

will be published in the near future under an open-source

license and distributed with CYTOMINE, a rich inter-

net application for the collaborative analysis of multi-

gigapixel biomedical images (Marée et al., 2015).
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