[en] Machine learning models have been successfully applied to neuroimaging data to make predictions about behavioral and cognitive states of interest. While these multivariate methods have greatly advanced the field of neuroimaging, their application to electrophysiological data has been less common especially in the analysis of human intracranial electroencephalography (iEEG, also known as electrocorticography or ECoG) data, which contains a rich spectrum of signals recorded from a relatively high number of recording sites.
In the present work, we introduce a novel approach to determine the contribution of different bandwidths of EEG signal in different recording sites across different experimental conditions using the Multiple Kernel Learning (MKL) method.
To validate and compare the usefulness of our approach, we applied this method to an ECoG dataset that was previously analysed and published with univariate methods.
Our findings proved the usefulness of the MKL method in detecting changes in the power of various frequency bands during a given task and selecting automatically the most contributory signal in the most contributory site(s) of recording.
With a single computation, the contribution of each frequency band in each recording site in the estimated multivariate model can be highlighted, which then allows formulation of hypotheses that can be tested a posteriori with univariate methods if needed.
Disciplines :
Neurologie Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Schrouff, Jessica ; Université de Liège > Centre de recherches du cylotron
Decoding intracranial EEG data with multiple kernel learning method
Date de publication/diffusion :
mars 2016
Titre du périodique :
Journal of Neuroscience Methods
ISSN :
0165-0270
Maison d'édition :
Elsevier Science, Amsterdam, Pays-Bas
Volume/Tome :
261
Pagination :
19-28
Peer reviewed :
Peer reviewed vérifié par ORBi
Intitulé du projet de recherche :
WT086565/Z/08/Z; WT102845/Z/13/Z; Marie Skłodowska Curie Actions (DecoMP_ECoG, grant 654038)
Organisme subsidiant :
NINDS - National Institute of Neurological Disorders and Stroke NSF - National Science Foundation BAEF - Belgian American Educational Foundation Fonds Léon Fredericq F.R.S.-FNRS - Fonds de la Recherche Scientifique Wellcome Trust
Chang E.F., Rieger J.W., Johnson K., Berger M.S., Barbaro N.M., Knight R.T. Categorical speech representation in human superior temporal gyrus. Nat Neurosci 2010, 13:1428-1432.
Cortes C, Vapnik V. Support Vector Networks Machine Learning, 1995.
Dai D., Wang J., Hua J., He H. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci 2012, 6:63.
Dastjerdi M., Ozker M., Foster B.L., Rangarajan V., Parvizi J. Numerical processing in the human parietal cortex during experimental and natural conditions. Nat Commun 2013, 4:2528.
Filipovych R., Resnick S.M., Davatzikos C. Multi-kernel classification for integration of clinical and imaging data: application to prediction of cognitive decline in older adults. Med Image Comput Comput Assist Interv 2011, 7009:26-34.
Filippone M., Marquand A.F., Blain C.R.V., Williams S.C.R., Mourao-Miranda J., Girolami M. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. Ann Appl Stat 2012, 6:1883-1905.
Flinker A., Chang E.F., Barbaro N.M., Berger M.S., Knight R.T. Sub-centimeter language organization in the human temporal lobe. Brain Lang 2011, 117:103-109.
Foster B.L., Dastjerdi M., Parvizi J. Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc Natl Acad Sci USA 2012, 109:15514-15519.
Gönen M., Alpaydin E. Multiple kernel learning algorithms. J Mach Learn Res 2011, 12:2211-2268.
Haynes J.D. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 2015, 87:257-270.
Hermes D., Miller K.J., Noordmans H.J., Vansteensel M.J., Ramsey N.F. Automated electrocorticographic electrode localization on individually rendered brain surfaces. J Neurosci Methods 2010, 185:293-298.
Hinrichs C., Singh V., Xu G., Johnson S.C. Initiative AsDN. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011, 55:574-589.
Manning J.R., Jacobs J., Fried I., Kahana M.J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 2009, 29:13613-13620.
Meyers E.M., Freedman D.J., Kreiman G., Miller E.K., Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol 2008, 100:1407-1419.
Meyers E.M., Qi X.L., Constantinidis C. Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proc Natl Acad Sci USA 2012, 109:4651-4656.
Mukamel R. Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 2005, 309:951-954.
Nir Y., Fisch L., Mukamel R., Gelbard-Sagiv H., Arieli A., Fried I., et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 2007, 17:1275-1285.
Noirhomme Q., Lesenfants D., Gomez F., Soddu A., Schrouff J., Garraux G., et al. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. Neuroimage: Clin 2014, 4:687-694.
Pasley B.N., David S.V., Mesgarani N., Flinker A., Shamma S.A., Crone N.E., et al. Reconstructing speech from human auditory cortex. PLoS Biol 2012, 10. 10.1371/journal.pbio.1001251.
Pereira F., Mitchell T.M., Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009, 45:S199-S209.
Quian Quiroga R., Panzeri S. Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 2009, 10:173-185.
Rakotomamonjy A., Bach F., Canu S., Grandvalet Y. SimpleMKL. J Mach Learn 2008, 9:2491-2521.
Ray S., Crone N.E., Niebur E., Franaszczuk P.J., Hsiao S.S. Neural correlates of high-gamma oscillations (60-200Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci 2008, 28:11526-11536.
Ray S., Maunsell J.H. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 2011, 9:e1000610.
Schrouff J., Rosa M., Rondina J. PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics 2013, 11:319-337.
van Gerven M., Maris E., Sperling M. Decoding the memorization of individual stimuli with direct human brain recordings. Neuroimage 2013, 70:223-232.
Zhang D., Wang Y., Zhou L., Yuan H., Shen D. Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 2011, 55:856-867.
Zhang Y., Meyers E.M., Bichot N.P., Serre T., Poggio T.A., Desimone R. Object decoding with attention in inferior temporal cortex. Proc Natl Acad Sci USA 2011, 108:8850-8855.
Zou H., Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc 2005, 67:301-320.