nonlinear system identification; wavelet transform; coulomb friction; restoring force surface method
Abstract :
[en] The identification of a nonlinear system is performed using experimental data and two different techniques, i.e. a method based on the Wavelet transform and the Restoring Force Surface method. Both techniques exploit the system free response and result in the estimation of linear and nonlinear physical parameters.
Disciplines :
Mechanical engineering
Author, co-author :
Lenaerts, V.; Université de Liège - ULiège > Département d'aérospatiale et Mécanique > Vibrations et Identification des Structures
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Golinval, Jean-Claude ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Ruzzene, M.; Georgia Institute of Technology > bSchool of Aerospace Engineering
Giorcelli, E.; Politecnico di Torino > Dipartimento di Meccanica
Language :
English
Title :
Validation of two nonlinear system identification techniques using an experimental testbed
D. Adams and R.J. Allemang, A frequency domain method for estimating the parameters of a non-linear structural dynamic model trhough feedback. Mechanical Systems and Signal Processing 14 (2000), 637-656.
P. Atkins and K. Worden, Proceedings of the 15th IMAC, Orlando, Florida, Identification of a multi-degree-of-freedom nonlinear system, 1997, pp. 1023-1028.
S.W.R. Duym, J.F.M. Schoukens and P.A.N. Guillaume, A local restoring force surface method, Modal Analysis 11(3) (1996), 117-132
M. Feldman, Proceedings of the 15th IMAC, Orlando, Florida, Vibration analysis of non-symmetric elastic force systems via the Hilbert transform, 1997, pp. 1017-1022.
K.S. Mohammad and G.K. Tomlinson, Proceedings of the 7th IMAC, Las Vegas, Nevada, A simple method of accurately determining the apparent damping in non-linear structures, 1989, pp. 1336-1346.
A.H. Nayfeh and D.T. Mook, Nonlinear oscillations, New York, John Wiley & Sons, 1979.
C.M. Richards and R. Singh, Identification of multi-degree-of-freedom non-linear systems under random excitations by the reverse-path spectral method. Journal of Sound and Vibration 213 (1998), 673-708.
M. Ruzzene et al., Natural frequencies and damping identification using wavelet transform: application to real data. Mechanical Systems and Signal Processing 11(2) (1997), 207-218.
W.J. Staszewski and G.R. Tomlinson, Application of the wavelet transform to fault detection in a spur gear. Mechanical Systems and Signal Processing 8(3) (1994), 289-307.
K. Worden, Parametric and non parametric identification of nonlinearity in structural dynamics, Ph.D. Thesis, Heriot-Watt University, 1989.
K. Worden, J.R. Wright, M.A. Al-Hadid and K.S. Mohammad, Experimental identification of multi degree of freedom nonlinear systems using restoring force methods. Modal Analysis 9(1) (1994), 35-55.
K. Worden and G.R. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identification and Modelling, Bristol, Institute of Physics Publishing, 2001.
J.R. Wright, M.F. Platten, J.E. Cooper and M. Sarmast, Proceedings of the International Conference on Structural System Identification, Kassel, Identification of multi-degree-of-freedom weakly non-linear systems using a model based in modal space, 2001, pp. 49-68.