Article (Scientific journals)
Feature extraction using auto-associative neural networks
Kerschen, Gaëtan; Golinval, Jean-Claude
2004In Smart Materials and Structures, 13 (1), p. 211-219
Peer Reviewed verified by ORBi
 

Files


Full Text
14_sms.pdf
Publisher postprint (496.5 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
extraction; auto-associative; neural networks; mechanical structures
Abstract :
[en] Modal analysis is now mature and well accepted in the design of mechanical structures. It determines the vibration mode shapes and the corresponding natural frequencies. However, the validity of modal analysis is limited to structures showing a linear behaviour. In non-linear structural dynamics, it is well known that mode shapes are no longer useful for the characterization of the dynamic response. The purpose of the present paper is to define new features which efficiently capture the dynamics of a non-linear structure. The proposed methodology takes advantage of auto-associative neural networks to compute one-dimensional curves which allow for non-linear dependences between the coordinates. Synthetic data sampled from a non-linear normal mode motion are used to illustrate the method and to develop intuition about its implementation.
Disciplines :
Materials science & engineering
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Kerschen, Gaëtan  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Golinval, Jean-Claude  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Language :
English
Title :
Feature extraction using auto-associative neural networks
Publication date :
February 2004
Journal title :
Smart Materials and Structures
ISSN :
0964-1726
eISSN :
1361-665X
Publisher :
Iop Publishing Ltd, Bristol, United Kingdom
Volume :
13
Issue :
1
Pages :
211-219
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 August 2009

Statistics


Number of views
79 (1 by ULiège)
Number of downloads
3 (1 by ULiège)

Scopus citations®
 
27
Scopus citations®
without self-citations
24
OpenCitations
 
21
OpenAlex citations
 
31

Bibliography


Similar publications



Contact ORBi