[en] The study presented in this paper aims to evaluate the transient performance of a waste heat recovery Rankine cycle based system for a heavy duty truck and compare it to steady state evaluation. Assuming some conditions to hold, simple thermodynamic simulations are carried out for the comparison of several fluids. Then a detailed rst principle based model is also presented.
Last part is focused on the Rankine cycle arrangement choice by means of model based evaluation of fuel economy for each concept where the fuels savings are computed using two methodologies. Fluid choice and concept optimization are conducted taking into account integration constraints (heat rejection, packaging . . . ). This paper shows the importance of the modeling phase when designing WHRS and yields a better understanding when it comes to a vehicle integration of a Rankine cycle in a truck.
Disciplines :
Energy
Author, co-author :
Grelet, Vincent; Université de Liège - ULiège
Reiche, Thomas; Renault Trucks
Lemort, Vincent ; Université de Liège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Nadri, Madiha; Université Claude Bernard Lyon 1
Dufour, Pascal; Université Claude Bernard Lyon 1
Language :
English
Title :
Transient performance evaluation of waste heat recovery Rankine cycle based system for heavy duty trucks
Patel P, Doyle E. Compounding the truck diesel engine with an organic rankine-cycle system. In: SAE Technical Paper, no. 760343, SAE International; 1976. doi:http://dx.doi.org/10.4271/760343. doi:10.4271/760343.
Oomori S, Ogino H. Waste heat recovery of passenger car using a combination of rankine bottoming cycle and evaporative cooling system. In: SAE Technical Paper, no. 930880, SAE International; 1993. doi:http://dx.doi.org/10.4271/930880. doi:10.4271/930880.
Boretti A. Recovery of exhaust and coolant heat with R245fa organic rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine. Appl Therm Eng 2012, 36(0):73-77. . 10.1016/j.applthermaleng.2011.11.060.
Willems F, Kupper F, Cloudt R. Integrated powertrain control for optimal CO2-NOx tradeoff in an euro-vi diesel engine with waste heat recovery system. In: American Control Conference (ACC), 2012; 2012. p. 1296-301. doi:http://dx.doi.org/10.1109/ACC.2012.6314879. doi:10.1109/ACC.2012.6314879.
Freymann R., Strobl W., Obieglo A. The turbosteamer: a system introducing the principle of cogeneration in automotive applications. MTZ Worldwide 2008, 69(5):20-27. 10.1007/BF03226909.
Wang T., Zhang Y., Peng Z., Shu G. A review of researches on thermal exhaust heat recovery with rankine cycle. Renew Sustain Energy Rev 2011, 15(6):2862-2871. . 10.1016/j.rser.2011.03.015.
Sprouse C., Depcik C. Review of organic rankine cycles for internal combustion engine exhaust waste heat recovery. Appl Therm Eng 2013, 51(1-2):711-722. . 10.1016/j.applthermaleng.2012.10.017.
Espinosa N. Contribution to the study of waste heat recovery systems on commercial truck diesel engines. Ph.D. thesis, University of Liege, National Polytechnic Institute of Lorraine; 2011.
Dickson J., Ellis M., Rousseau T., Smith J. Validation and design of heavy vehicle cooling system with waste heat recovery condenser. SAE Int J Commer Vehic 2014, 7:458-467. 10.4271/2014-01-2339.
Wang E., Zhang H., Zhao Y., Fan B., Wu Y., Mu Q. Performance analysis of a novel system combining a dual loop organic rankine cycle (orc) with a gasoline engine. Energy 2012, 43(1):385-395. 2nd International meeting on cleaner combustion (CM0901-Detailed Chemical Models for Cleaner Combustion). . 10.1016/j.energy.2012.04.006.
Boretti A.A. Transient operation of internal combustion engines with rankine waste heat recovery systems. Appl Therm Eng 2012, 48:18-23. . 10.1016/j.applthermaleng.2012.04.043.
Peralez J, Tona P, Lepreux O, Sciarretta A, Voise L, Dufour P, Nadri M. Improving the control performance of an organic rankine cycle system for waste heat recovery from a heavy-duty diesel engine using a model-based approach. In: 52nd Annual IEEE conference on decision and control (CDC); 2013. p. 6830-6. doi:http://dx.doi.org/10.1109/CDC.2013.6760971. doi:10.1109/CDC.2013.6760971.
Quoilin S., Broek M.V.D., Declaye S., Dewallef P., Lemort V. Techno-economic survey of organic rankine cycle (orc) systems. Renew Sustain Energy Rev 2013, 22:168-186. . 10.1016/j.rser.2013.01.028.
Lecompte S., Huisseune H., van den Broek M., Schampheleire S.D., Paepe M.D. Part load based thermo-economic optimization of the organic rankine cycle (orc) applied to a combined heat and power (chp) system. Appl Energy 2013, 111:871-881. . 10.1016/j.apenergy.2013.06.043.
Horst T.A., Tegethoff W., Eilts P., Koehler J. Prediction of dynamic rankine cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles' energy management. Energy Convers Management 2014, 78(0):438-451. . 10.1016/j.enconman.2013.10.074.
Legros A., Guillaume L., Diny M., Zaïdi H., Lemort V. Comparison and impact of waste heat recovery technologies on passenger car fuel consumption in a normalized driving cycle. Energies 2014, 7(8):5273-5290. .
Bredel E., Nickl J., Bartosch S. Waste heat recovery in drive systems of today and tomorrow. MTZ Worldwide eMagazine 2011, 72(4):52-56. 10.1365/s38313-011-0042-0.
Freymann R., Ringler J., Seifert M., Horst T. The second generation turbosteamer. MTZ Worldwide 2012, 73(2):18-23. 10.1365/s38313-012-0138-1.
Flik S, Edwards M, Pantow E. Emissions reduction in commercial vehicles via thermomanagement. In: Proceedings of the 30th wiener motorensymposium, Viena, Austria; 2009.
Mago P.J., Chamra L.M., Somayaji C., cycles Performance analysis of different working fluids for use in organic rankine Proceedings of the institution of mechanical engineers. Part A: J Power Energy 2007, 221(3):255-263. . 10.1243/09576509JPE372.
Stijepovic M.Z., Linke P., Papadopoulos A.I., Grujic A.S. On the role of working fluid properties in organic rankine cycle performance. Appl Therm Eng 2012, 36(0):406-413. . 10.1016/j.applthermaleng.2011.10.057.
Papadopoulos A.I., Stijepovic M., Linke P. On the systematic design and selection of optimal working fluids for organic rankine cycles. Appl Therm Eng 2010, 30(6-7):760-769. . 10.1016/j.applthermaleng.2009.12.006.
Cayer E., Galanis N., Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source. Appl Energy 2010, 87(4):1349-1357. . 10.1016/j.apenergy.2009.08.031.
Karellas S., Schuster A., Leontaritis A.-D. Influence of supercritical ORC parameters on plate heat exchanger design. Appl Therm Eng 2012, 33-34(0):70-76. . 10.1016/j.applthermaleng.2011.09.013.
Eric MLH, Lemmon W. Refprop nist standard reference database 23 (version 9.0), thermophysical properties division, national institute of standards and technology, Boulder, CO; May 2013. <>. http://www.nist.gov/srd/nist23.cfm.
Feru E, Kupper F, Rojer C, Seykens X, Scappin F, Willems F, et al. Experimental validation of a dynamic waste heat recovery system model for control purposes. In: SAE Technical Paper, SAE International; 2013. doi:http://dx.doi.org/10.4271/2013-01-1647. doi:10.4271/2013-01-1647.
Horst T.A., Rottengruber H.-S., Seifert M., Ringler J. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Appl Energy 2013, 105(0):293-303. . 10.1016/j.apenergy.2012.12.060.
Willatzen M., Pettit N., Ploug-Sørensen L. A general dynamic simulation model for evaporators and condensers in refrigeration. part i: moving-boundary formulation of two-phase flows with heat exchange: Modèle général dynamique pour évaporateurs et condenseurs frigorifiques. partic i: Formulation des conditions aux limites variables de flux biphasiques avec échange de chaleur. Int J Refrigeration 1998, 21(5):398-403. . 10.1016/S0140-7007(97)00091-1.
Judge J., Radermacher R. A heat exchanger model for mixtures and pure refrigerant cycle simulations. Int J Refrigeration 1997, 20(4):244-255. . 10.1016/S0140-7007(97)00010-8.
Bendapudi S., Braun J.E., Groll E.A. A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers. Int J Refrigeration 2008, 31(8):1437-1452. . 10.1016/j.ijrefrig.2008.03.006.
Bell I.H., Quoilin S., Georges E., Braun J.E., Groll E.A., Horton W.T., et al. A generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration. Appl Therm Eng 2015, 79:192-201. . 10.1016/j.applthermaleng.2014.12.028.
Vaja I. Definition of an object oriented library for the dynamic simulation of advanced energy systems: methodologies, tools and applications to combined ice-orc power plants. Ph.D. thesis, University of Parma; 2009.
Thome J.R. Wolverine tube inc engineering data book III, heat transfer databook 2010, Wolverine Tube Inc., .
Bao J., Zhao L. A review of working fluid and expander selections for organic rankine cycle. Renew Sustain Energy Rev 2013, 24:325-342. . 10.1016/j.rser.2013.03.040.
Badr O., O'Callaghan P., Probert S. Performances of rankine-cycle engines as functions of their expanders' efficiencies. Appl Energy 1984, 18(1):15-27. . 10.1016/0306-2619(84)90042-4.
Costall A., Hernandez A.G., Newton P., Martinez-Botas R. Design methodology for radial turbo expanders in mobile organic rankine cycle applications. Appl Energy 2015, . 10.1016/j.apenergy.2015.02.072.
Latz G, Andersson S, Munch K. Selecting an expansion machine for vehicle waste-heat recovery systems based on the rankine cycle. In: SAE Technical Paper, SAE International; 2013. doi:http://dx.doi.org/10.4271/2013-01-0552. doi:10.4271/2013-01-0552.
Baljé O.E. A study on design criteria and matching of turbomachines: Part A - Similarity relations and design criteria of turbines. J Eng Gas Turbines Power 1962, 84(1):83-102. 10.1115/1.3673386.
Maraver D., Royo J., Lemort V., Quoilin S. Systematic optimization of subcritical and transcritical organic rankine cycles (orcs) constrained by technical parameters in multiple applications. Appl Energy 2014, 117(0):11-29. . 10.1016/j.apenergy.2013.11.076.
Lecompte S., Huisseune H., van den Broek M., Vanslambrouck B., Paepe M.D. Review of organic rankine cycle (orc) architectures for waste heat recovery. Renew Sustain Energy Rev 2015, 47(0):448-461. . 10.1016/j.rser.2015.03.089.
Mavridou S., Mavropoulos G., Bouris D., Hountalas D., Bergeles G. Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements. Appl Therm Eng 2010, 30(8-9):935-947. . 10.1016/j.applthermaleng.2010.01.003.
Stobart R, Hounsham S, Weerasinghe R. The controllability of vapour based thermal recovery systems in vehicles. In: SAE Technical Paper, SAE International; 2007. doi:http://dx.doi.org/10.4271/2007-01-0270. doi:10.4271/2007-01-0270.
Fischer J. Comparison of trilateral cycles and organic rankine cycles. Energy 2011, 36(10):6208-6219. . 10.1016/j.energy.2011.07.041.
Edwards S., Eitel J., Pantow E., Geskes P., Lutz R., Tepas J. Waste heat recovery: the next challenge for commercial vehicle thermomanagement. SAE Int J Commer Vehic 2012, 5:395-406. 10.4271/2012-01-1205.
Luong D, Tsao T-C. Linear quadratic integral control of an organic rankine cycle for waste heat recovery in heavy-duty diesel powertrain. In: American control conference (ACC), 2014; 2014. p. 3147-52. doi:http://dx.doi.org/10.1109/ACC.2014.6858907. doi:10.1109/ACC.2014.6858907.
Quoilin S., Aumann R., Grill A., Schuster A., Lemort V., Spliethoff H. Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles. Appl Energy 2011, 88(6):2183-2190. . 10.1016/j.apenergy.2011.01.015.