ASSAF, D. AND SAMUEL-CAHN, E. (1996). The secretary problem: minimizing the expected rank with i.i.d. random variables. Adv. Appl. Prob. 28, 828-852.
BRUSS, F. T. (2005). What is known about Robbins' problem? J. Appl. Prob. 42, 108-120.
BRUSS, R T. AND FERGUSON, T. S. (1993). Minimizing the expected rank with full information. J. Appl. Prob. 30, 616-626.
BRUSS, F. T. AND FERGUSON, T. S. (1996). Half-prophets and Robbins' problem of minimizing the expected rank. In Athens Conf. Appl. Prob. Time Ser: Anal. (Lecture Notes Statist. 114), Vol. 1, Springer, New York, pp. 1-17.
CHOW, Y. S., MORIGUTI, S., ROBBINS, H. AND SAMUELS, S. M. (1964). Optimal selection based on relative ranks. Israel J. Math. 2, 81-90.
FELLER, W. (1950). An Introduction to Probability and its Applications, Vol. 1, 3rd edn. John Wiley, New York.
GNEDIN, A. V. (2007). Optimal stopping with rank-dependent loss. J. Appl. Prob. 44, 996-1011.
KÜHNE, R. AND RÜSCHENDORF, L. (2000). Approximation of optimal stopping problems. Stock. Process. Appl. 90, 301-325.
MOSER, L. (1956). On a problem of Cayley. Scripta Math. 22, 289-292.