[en] The plot of kcat/Km against pH for the Bacillus cereus 569/H beta-lactamase class B catalysed hydrolysis of benzylpenicillin and cephalosporin indicates that there are three catalytically important groups, two of pKa 5.6+/-0.2 and one of pKa 9.5+/-0.2. Below pH 5 there is an inverse second-order dependence of reactivity upon hydrogen ion concentration, indicative of the requirement of two basic residues for catalysis. These are assigned to zinc(II)-bound water and Asp-90, both with a pKa of 5.6+/-0.2. A thiol, N-(2'-mercaptoethyl)-2-phenylacetamide, is an inhibitor of the class B enzyme with a Ki of 70 microM. The pH-dependence of Ki shows similar pH inflections to those observed in the catalysed hydrolysis of substrates. The pH-independence of Ki between pH 6 and 9 indicates that the pKa of zinc(II)-bound water must be 5.6 and not the higher pKa of 9.5. The kinetic solvent isotope effect on kcat/Km is 1.3+/-0.5 and that on kcat is 1.5. There is no effect on reactivity by either added zinc(II) or methanol. The possible mechanisms of action for the class B beta-lactamase are discussed, and it is concluded that zinc(II) acts as a Lewis acid to stabilize the dianionic form of the tetrahedral intermediate and to provide a hydroxide-ion bound nucleophile, whereas the carboxylate anion of Asp-90 acts as a general base to form the dianion and also, presumably, as a general acid catalyst facilitating C-N bond fission.
Sykes, R. B. and Matthe, M. (1976) J. Antimicrob. Chemother. 2, 115-157
Medeiros, A. A. (1984) Br. Med. Bull. 40, 18-27
Waley, S. G. (1992) in The Chemistry of β-Lactams (Page, M. I., ed.), pp. 198-228, Chapman and Hall, London
Jaurin, B. and Gundström, T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4897-4901
Dale, J. W., Godwin, D., Mossakowska, D., Stephenson, P. and Wall, S. (1985) FEBS Lett. 191, 39-44
Ambler, R. P., Coulson, A. F. W., Frère, J.-M., Ghuysen, J.-M., Joris, B., Forsman, M., Levesque, R. C., Tiraby, G. and Waley, S. G. (1991) Biochem. J. 276, 269-272
Joris, B., Ledent, P., Dideberg, O., Fonzè, E., Lamotte-Brassuer, J., Kelly, A., Ghuysen, J. and Frère, J.-M. (1991) Antimicrob. Agents Chemother. 35, 2294-2301
Kubawara, S. and Abraham, E. P. (1967) Biochem. J. 103, 23C-30C
Saino, Y., Kobayashi, F., Inoue, M. and Mitsuhashi, S. (1982) Antimicrob. Agents Chemother. 34, 1590-1592
Bicknell, R., Emanuel, E. L., Gagnon, J. and Waley, S. G. (1985) Biochem. J. 229, 791-797
Iaconis, J. P. and Sanders, C. C. (1990) Antimicrob. Agents Chemother. 34, 44-51
Cuchural, Jr., G. J., Malamy, M. H. and Tally, F. P. (1986) Antimicrob. Agents Chemother. 30, 645-648
Bandoh, K., Myto, Y., Watanabe, K., Katoh, N. and Ueno, K. (1991) Antimicrob. Agents Chemother. 35, 371-372
Payne, D. J. (1993) J. Med. Microbiol. 39, 93-99
Felici, A., Amicosante, G., Oratore, A., Strom, R., Ledent, P., Joris, B., Fanuel, L. and Frère, J.-M. (1993) Biochem. J. 291, 151-155
Lim, H. M., Pène, J. J. and Shaw, R. (1988) J. Bacteriol. 170, 2873-2878
Frère, J.-M. (1995) Mol. Microbiol. 16, 385-395
Massidda, O., Rossolini, G. M. and Salta, G. (1991) J. Bacteriol. 173, 4611-1617
Rasmussen, B. A., Gluzman, Y. and Tally, F. P. (1990) Antimicrob. Agents Chemother. 34, 1590-1592
Thompson, J. S. and Malamy, M. H. (1990) J. Bacteriol. 172, 2584-2593
Hussain, M., Carlino, A., Madonnam, M. J. and Lampen, J. O. (1985) J. Bacteriol. 164, 223-229
Ambler, R. P., Daniel, M., Fleming, J., Hermoso, J.-M., Pang, C. and Waley, S. G. (1986) FEBS Lett. 189, 207-211
Sutton, B. J., Artymiuk, P. J., Cordero-Borboa, A. E., Little, C., Phillips, D. C. and Waley, S. G. (1987) Biochem. J. 248, 181-188
Carfi, A., Pares, S., Duée, E., Galleni, M., Duez, C., Frère, J.-M. and Dideberg, O. (1995) EMBO J. 14, 4914-4921
Davies, R. B. and Abraham, E. P. (1974) Biochem. J. 143, 129-135
Baldwin, G. S., Galdes, A., Hill, H. A. O., Smith, B. E., Waley, S. G. and Abraham, E. P. (1978) Biochem. J. 175, 441-447
Concha, N. O., Rasmussen, B. A., Nush, K. and Herzberg, O. (1966) Structure 4, 823-637
Carfi, A., Paul-Soto, R., Martin, L., Petillot, Y., Frère, J.-M. and Dideberg, O. (1997) Acta Crystallogr. Sect. D: Biol. Crystallogr. D53, 485-487
Crowder, M. W., Wang, Z., Franklin, S. C., Zovinka, E. P. and Benkovic, S. J. (1996) Biochemistry 35, 12126-12132
Little, C., Emanuel, E. L., Gagnon, J. and Waley, S. G. (1986) Biochem. J. 233, 465-469
Lim, H. M. and Pène, J. J. (1989) J. Biol. Chem. 264, 11682-11687
Lim, H. M., Iyer, R. K. and Pène, J. J. (1991) Biochem. J. 276, 401-404
Laws, A. P., Layland, N. J., Proctor, D. G. and Page, M. I. (1993) J. Chem. Soc. Perkin Trans. 2, 17-21
Bicknell, R., Knott-Junziker, V. and Waley, S. G. (1983) Biochem. J. 213, 61-66
Cleland, W. W. (1977) Adv. Enzymol. Rel. Areas Mol. Biol. 45, 273-387
Fersht, A. R. (1985) Enzyme Structure and Mechanism, W. H. Freeman, New York
Perrin, D. D. (1982) Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, 2nd edn., Pergamon, Oxford
Pocker, Y. and Bjorkquist, D. W. (1977) Biochemistry 16, 5698-5707
Kimura, E., Shiota, T., Koike, T., Shiro, M. and Kodama, M. (1990) J. Am. Chem. Soc. 112, 5805-5811
Mock, W. L. and Tsay, J.-T. (1986) Biochemistry 25, 2920-2927
Mock, W. L. and Tsay, J.-T. (1988) J. Biol. Chem. 263, 8635-8641
Kaiser, E. T. and Kaiser, B. L. (1972) Acc. Chem. Res. 5, 219-224
Suh, J. and Kaiser, E. T. (1976) J. Am. Chem. Soc. 98, 1940-1947
Christianson, D. W., David, P. R. and Lipscomb, W. N. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1512-1515
Osumi, A., Rahmo, A., King, S. W., Przystas, T. L. and Fife, T. H. (1994) Biochemistry 33, 14750-14757
Rees, D. C., Lewis, M. and Lipscomb, W. N. (1983) J. Mol. Biol. 168, 367-387
Bertini, I., Luchinat, C., Rosi, M., Sgamelloti, A. and Tarantelli, F. (1990) Inorg. Chem. 29, 1460-1463
Christiansen, D. W. and Fierke, C. A. (1996) Acc. Chem. Res. 29, 331-339
Xiang, S. B., Short, S. A., Wolfenden, R. and Carter, C. W. (1996) Biochemistry 35, 1335-1341
Kiefer, L. L. and Fierke, C. A. (1994) Biochemistry 33, 15233-15240
Davis, A. M., Proctor, P. and Page, M. I. (1991) J. Chem. Soc. Perkin Trans. 2, 1213-1217
Christianson, D. W. and Lipscomb, W. N. (1989) Acc. Chem. Res. 22, 62-69
Breslow, R., Chin, J., Hilvert, D. and Trainor, G. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4585-4589
Breslow, R. and Schepartz, A. (1987) Chem. Lett. 1-4
Lee, S., Hwang, B. K., Myoung, Y. C. and Suh, J. (1995) Bioorganic Chem. 23, 183-192
Banci, L., Bertini, I. and La Penna, H. (1994) Proteins: Struct. Funct. Genet. 18, 186-197
Mustafi, D. and Markinen, M. W. (1994) J. Biol. Chem. 269, 4587-4595
Britt, B. M. and Peticolas, W. L. (1992) J. Am. Chem. Soc. 114, 5295-5303
Suh, J., Cho, W. and Chung, S. (1985) J. Am. Chem. Soc. 107, 4530-4535
Page, M. I. (1992) in The Chemistry of β-Lactam Antibiotics (Page, M. I., ed.), pp. 79-100, and 128-147, Blackie, Glasgow
Page, M. I. (1987) Adv. Phys. Org. Chem. 23, 165-270
Page, M. I. (1984) Acc. Chem. Res. 17, 144-151
Proctor, P., Gensmantel, N. P. and Page, M. I. (1982) J. Chem. Soc. Perkin Trans. 2, 1185-1192
Gensmantel, N. P., Proctor, P. and Page, M. I. (1980) J. Chem. Soc. Perkin Trans. 2, 1725-1732
DeWolfe, R. H. and Newcomb, R. C. (1971) J. Org. Chem. 36, 3870-3878
Eriksson, S. O. (1968) Acta Chem. Scand. 22, 892-906
Young, J. K., Pazhanisamay, S. and Schowen, R. L. (1984) J. Org. Chem. 49, 4148-4152
Menger, F. M. and Donohue, J. A. (1973) J. Am. Chem. Soc. 95, 432-437
Brown, R. S., Bennet, A. J. and Slebocka-Tilk, H. (1992) Acc. Chem. Res. 25, 481-488
Page, M. I. and Williams, A. (1997) Organic and Bioorganic Mechanisms, pp. 80-96, Longman, Harlow
Gensmantel, N. P., Gowling, E. W. and Page, M. I. (1978) J. Chem. Soc. Perkin Trans. 2, 335-342
Kresge, A. J. and Lin, A. C. (1975) J. Am. Chem. Soc. 97, 6257-6258