[en] Klebsiella pneumoniae ML1708 exhibited a multiresistance phenotype, including resistance to all beta-lactams tested, chloramphenicol, ciprofloxacin, nalidixic acid, tetracycline, and streptomycin. The double-disk synergy test was positive. ML1708 harbored a 50 kb conjugative plasmid that encoded a beta-lactamase of pI 5.5. The corresponding bla gene was identified by polymerase chain reaction and sequencing as a bla(TEM) gene. The deduced protein sequence revealed a new variant of TEM-1 beta-lactamase designated TEM-164. TEM-164 contains the unusual following mutations: L40V and I279T. These modifications may result in a change of the pI to 5.5 and hydrolyze cefotaxime and ceftazidime.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Ben Achour, Nahed
Mercuri, Paola ; Université de Liège > Département des sciences de la vie > Macromolécules biologiques
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ambler, R.P. 1980. The structure of β-lactamases. Phil. Trans. R. Soc. Lond. Biol. 289:321-331.
Ambler, R.P., A.F.W. Coulson, J.M. Frere, J.M. Ghuysen, B. Joris, M. Forsman, R.C. Levesque, G. Tiraby, and S.G. Waey. 1991. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276:269-270.
Babic, M., A.M. Hujer, and R.A. Bonomo. 2006. What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resist. Updates 9:142-156.
Baraniak, A., J. Fiett, A. Mrowka, J. Walory, W. Hryniewicz, and M. Gniadkowski. 2005. Evolution of TEM-type extended-spectrum β-lactamases in clinical Enterobacteriaceae strains in Poland. Antimicrob. Agents Chemother. 49:1872-1880.
Ben-Mahrez, K., S. Réjiba, C. Belhadj, and O. Belhadj. 1999. β-lactamase-mediated resistance to extended spectrum cephalosporins among clinical isolates of Pseudomonas aeru-ginosa. Res. Microbiol. 150:403-406.
Bonnet, R. 2004. Growing group of extended-spectrum β-lactamases, the CTX-M-enzymes. Antimicrob. Agents Chemother. 48:1-14.
Bradford, P.A. 2001. Extended spectrum β-lactamases in the 21st century: characterisation, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933-951.
Bush, K., G.A. Jacoby, and A.A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211-1233.
Chouchani, C., N. Ben Achour, A. M'Charek, and O. Belhadj. 2007. First characterization in Tunisia of a TEM-15, extended-spectrum β-lactamase- producing Klebsiella pneu-moniae isolate. Microb. Drug Resist. 13:114-118.
Chouchani, C., R. Berlemont, A. Masmoudi, M. Galleni, J.M. Frere, O. Belhadj, and K. Ben-Mahrez. 2006. A novel extended-spectrum TEM-type β-lactamase, TEM-138, from Salmonella enterica serovar Infantis. Antimicrob. Agents Chemother. 50:3183-3185.
Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement, CLSI document; M100-S16. Wayne, PA: CLSI.
Delmas, J., F. Robin, F. Bittar, C. Chanal, and R. Bonnet. 2005. Unexpected enzyme TEM-126: role of mutation As-p179Glu. Antimicrob. Agents Chemother. 49:4280-4287.
Du Bois, S.K., M.S. Marriott, and S.G. Amyes. 1995. TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure and function. J. Antimicrob. Chemother. 35:7-22.
Garau, G., I. Garcia-Saez, C. Bebrone, P. Mercuri, M. Galleni, J.M. Frére, and O. Dideberg. 2004. Update of the standard numbering scheme for class B β-lactamases. Anti-microb. Agents Chemother. 48:2347-2349.
Haeggman, S., S. Löfdahl, A. Pawn, J. Verhoef, and S. Brisse. 2004. Diversity and evolution of the class A chro-mosomal β-lactamase gene in Klebsiella pneumoniae. Anti-microb. Agents Chemother. 48:2400-2408.
Labia, R., and M. Barthélémy. 1979. Beta-lactamase en-zymogram: an agar adaptation of the iodometric method. Ann. Microbiol. 30B:295-304.
Lautenbach, E., J.B. Patel, W.B. Bilker, P.H. Edelstein, and N.O. Fishman. 2001. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 32:1162-1171. (Pubitemid 32390110)
Livermore, D.M. 1995. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557-584.
Livermore, D.M., and D.F.J. Brawn. 2001. Detection of β-lactamase-mediated resistance. J. Antimicrob. Chemother. 48 , SUL. SI: 59-64.
Makanera, A., G. Arlet, V. Gautier, and M. Manai. 2003. Molecular epidemiology and characterization of plasmid-encoded β-lactamases produced by Tunisian clinical isolates of Salmonella enterica serotype Mbandaka resistant to broad-spectrum cephalosporins. J. Clin. Microbiol. 41:2940-2945.
Matagne, A., J. Lamotte-Brasseur, and J.M. Frere. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330:581-598.
Nukaga, M., K. Mayama, A.M. Hujer, R.A. Bonomo, and J.R. Knox. 2003. Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. J. Mol. Biol. 328:289-301.
Perret, C.J. 1954. Iodometric assay of penicillinases. Nature 174:1012-1013.
Petrosino, J., C. Cantu, and T. Palzkill. 1998. β-lactamases: protein evolution in real time. Trends Microbiol. 8:323-327.
Robin, F., J. Delmas, C. Chanel, D. Sirot, J. Sirot, and R. Bonnet. 2005. TEM-109 (CMT-5), a natural complex mutant of TEM-1 β-lactamase combining the amino acid substitutions of TEM-6 and TEM-33 (IRT-5). Antimicrob. Agents Chemother. 49:4443-4447.
Shah, A.A., F. Hasan, S. Ahmed, and A. Hameed. 2004. Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum β-lactamases. Res. Microbiol. 155: 409-421.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.