[en] Klebsiella pneumoniae ML1708 exhibited a multiresistance phenotype, including resistance to all beta-lactams tested, chloramphenicol, ciprofloxacin, nalidixic acid, tetracycline, and streptomycin. The double-disk synergy test was positive. ML1708 harbored a 50 kb conjugative plasmid that encoded a beta-lactamase of pI 5.5. The corresponding bla gene was identified by polymerase chain reaction and sequencing as a bla(TEM) gene. The deduced protein sequence revealed a new variant of TEM-1 beta-lactamase designated TEM-164. TEM-164 contains the unusual following mutations: L40V and I279T. These modifications may result in a change of the pI to 5.5 and hydrolyze cefotaxime and ceftazidime.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Ben Achour, Nahed
Mercuri, Paola ; Université de Liège > Département des sciences de la vie > Macromolécules biologiques
Ambler, R.P. 1980. The structure of β-lactamases. Phil. Trans. R. Soc. Lond. Biol. 289:321-331.
Ambler, R.P., A.F.W. Coulson, J.M. Frere, J.M. Ghuysen, B. Joris, M. Forsman, R.C. Levesque, G. Tiraby, and S.G. Waey. 1991. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276:269-270.
Babic, M., A.M. Hujer, and R.A. Bonomo. 2006. What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resist. Updates 9:142-156.
Baraniak, A., J. Fiett, A. Mrowka, J. Walory, W. Hryniewicz, and M. Gniadkowski. 2005. Evolution of TEM-type extended-spectrum β-lactamases in clinical Enterobacteriaceae strains in Poland. Antimicrob. Agents Chemother. 49:1872-1880.
Ben-Mahrez, K., S. Réjiba, C. Belhadj, and O. Belhadj. 1999. β-lactamase-mediated resistance to extended spectrum cephalosporins among clinical isolates of Pseudomonas aeru-ginosa. Res. Microbiol. 150:403-406.
Bonnet, R. 2004. Growing group of extended-spectrum β-lactamases, the CTX-M-enzymes. Antimicrob. Agents Chemother. 48:1-14.
Bradford, P.A. 2001. Extended spectrum β-lactamases in the 21st century: characterisation, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933-951.
Bush, K., G.A. Jacoby, and A.A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211-1233.
Chouchani, C., N. Ben Achour, A. M'Charek, and O. Belhadj. 2007. First characterization in Tunisia of a TEM-15, extended-spectrum β-lactamase- producing Klebsiella pneu-moniae isolate. Microb. Drug Resist. 13:114-118.
Chouchani, C., R. Berlemont, A. Masmoudi, M. Galleni, J.M. Frere, O. Belhadj, and K. Ben-Mahrez. 2006. A novel extended-spectrum TEM-type β-lactamase, TEM-138, from Salmonella enterica serovar Infantis. Antimicrob. Agents Chemother. 50:3183-3185.
Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement, CLSI document; M100-S16. Wayne, PA: CLSI.
Delmas, J., F. Robin, F. Bittar, C. Chanal, and R. Bonnet. 2005. Unexpected enzyme TEM-126: role of mutation As-p179Glu. Antimicrob. Agents Chemother. 49:4280-4287.
Du Bois, S.K., M.S. Marriott, and S.G. Amyes. 1995. TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure and function. J. Antimicrob. Chemother. 35:7-22.
Garau, G., I. Garcia-Saez, C. Bebrone, P. Mercuri, M. Galleni, J.M. Frére, and O. Dideberg. 2004. Update of the standard numbering scheme for class B β-lactamases. Anti-microb. Agents Chemother. 48:2347-2349.
Haeggman, S., S. Löfdahl, A. Pawn, J. Verhoef, and S. Brisse. 2004. Diversity and evolution of the class A chro-mosomal β-lactamase gene in Klebsiella pneumoniae. Anti-microb. Agents Chemother. 48:2400-2408.
Labia, R., and M. Barthélémy. 1979. Beta-lactamase en-zymogram: an agar adaptation of the iodometric method. Ann. Microbiol. 30B:295-304.
Lautenbach, E., J.B. Patel, W.B. Bilker, P.H. Edelstein, and N.O. Fishman. 2001. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 32:1162-1171. (Pubitemid 32390110)
Livermore, D.M. 1995. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557-584.
Livermore, D.M., and D.F.J. Brawn. 2001. Detection of β-lactamase-mediated resistance. J. Antimicrob. Chemother. 48 , SUL. SI: 59-64.
Makanera, A., G. Arlet, V. Gautier, and M. Manai. 2003. Molecular epidemiology and characterization of plasmid-encoded β-lactamases produced by Tunisian clinical isolates of Salmonella enterica serotype Mbandaka resistant to broad-spectrum cephalosporins. J. Clin. Microbiol. 41:2940-2945.
Matagne, A., J. Lamotte-Brasseur, and J.M. Frere. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330:581-598.
Nukaga, M., K. Mayama, A.M. Hujer, R.A. Bonomo, and J.R. Knox. 2003. Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. J. Mol. Biol. 328:289-301.
Perret, C.J. 1954. Iodometric assay of penicillinases. Nature 174:1012-1013.
Petrosino, J., C. Cantu, and T. Palzkill. 1998. β-lactamases: protein evolution in real time. Trends Microbiol. 8:323-327.
Robin, F., J. Delmas, C. Chanel, D. Sirot, J. Sirot, and R. Bonnet. 2005. TEM-109 (CMT-5), a natural complex mutant of TEM-1 β-lactamase combining the amino acid substitutions of TEM-6 and TEM-33 (IRT-5). Antimicrob. Agents Chemother. 49:4443-4447.
Shah, A.A., F. Hasan, S. Ahmed, and A. Hameed. 2004. Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum β-lactamases. Res. Microbiol. 155: 409-421.