[en] Mechanically stirred vessels equipped with rotating impellers generate heterogeneous transitional or turbulent flows. However, some cells as animal or human mesenchymal stem cells (hMSC) adhered on microcarriers, are reputed sensitive to hydromechanical stresses arising from stirring. Many publications, especially using Computational Fluid Dynamics, characterize spatial fields of velocity and turbulence inside bioreactors but the exposure frequency to these stresses is never taken into account in the case of animal cell culture bioreactor description. To fill this gap, this study used both CFD Reynolds-Averaged and Large-Eddy Simulations to characterize the hydrodynamics inside 250 mL mini-bioreactors, which is a relevant volume for hMSC cultures. Five impeller geometries were studied. From the velocity and turbulence fields calculated, an energy dissipation/circulation function, related to both frequency and intensity of potentially damaging hydrodynamic events for the cells, was determined for various operating conditions. Based on the simulation results, the marine propeller operating in up-pumping mode seems to be the most adapted condition, since it exhibits a low frequency of exposure to an acceptable intensity of the turbulent dissipation rate. From a general point of view, the new methodology proposed should be used in the future to screen the most adapted bioreactor geometry to biological constraints.
Disciplines :
Chemical engineering
Author, co-author :
Collignon, Marie-Laure ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Delafosse, Angélique; Université de Liège - ULiège > Department of Chemical Engineering > PEPS
Calvo, Sébastien ; Université de Liège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Martin, Céline; Université de Lorraine > Laboratoire de Réactions et Génie des Procédés > BioProMo
Marc, Annie; Université de Lorraine > Laboratoire Réactions et Génie des Procédés > BioProMo
Toye, Dominique ; Université de Liège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Olmos, Eric; Université de Lorraine > Laboratoire Réactions et Génie des Procédés > BioProMo
Language :
English
Title :
Large-Eddy Simulations of microcarrier exposure to potentially damaging eddies inside mini-bioreactors
Publication date :
2016
Journal title :
Biochemical Engineering Journal
ISSN :
1369-703X
Publisher :
Elsevier Science, Lausanne, Switzerland
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Development of tools to design and extrapolate stirred tank bioreactors used for the cultivation of mesenchymal stem cells on microcarriers (Chargé de recherches [CR] 1206614F)
Amanullah A., Buckland B.C., Nienow A.W. Mixing in fermentation and cell culture industries. Handbook of industrial mixing 2004, 1071-1170. Wiley Interscience, New Jersey. E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta (Eds.).
Al-Rubeai M., Singh R.P., Emery A.N., Zhang Z. Cell cycle and cell size dependence of susceptibility to hydrodynamic forces. Biotechnol. Bioeng. 1995, 46:88-92.
Dreveton E., Monot F., Lecourtier J., Ballerini D., Chopin L. Influence of fermentation hydrodynamics on Gellan gum physico-chemical characteristics. J. Ferment. Bioeng. 1996, 82:272-276.
Fowler J.D., Dunlop E.H. Effects of reactant heterogeneities and mixing in catabolite repression in cultures of Saccharomyces cerevisae. Biotechnol. Bioeng. 1989, 33:1039-1046.
Jaworski Z., Dyster K.N., Nienow A.W. The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. Trans. IChem. 2001, 79:887-894.
Kolmogorov A.N. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 1941, 32:19-21.
Delafosse A., Line A., Morchain J., Guiraud P. LES and URANS simulations of hydrodynamics in mixing tank: comparison to PIV experiments. Chem. Eng. Res. Des. 2008, 86:1322-1330.
Murthy B.N., Joshi J.B. Assesment of standard k-ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller design. Chem. Eng. Sci. 2008, 63:5468-5495.
Kumaresan T., Joshi J.B. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J. 2006, 115:173-193.
Zhou G., Kresta S.M. Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers. AICHE J. 1996, 42:2476-2490.
Micheletti M., Baldi S., Yeoh S.L., Ducci A., Papadakis G., Lee K.C., Yianneskis M. On spatial and temporal variations and estimates of energy dissipation in stirred reactors. Chem. Eng. Res. Design 2004, 82:1188-1198.
Hewitt C.J., Lee K., Nienow A.W., Thomas R.J., Smith M., Thomas C.R. Expansion of human mesenchymal stem cells on microcarriers. Biotechnol. Lett. 2011, 33:2325-2335.
Dos Santos F., Andrade P.Z., Abecasis M.M., Gimble J.M., Chase L.G., Campbell A.M., Boucher S., Vemuri M.C., Da Silva C.L., Cabral J.M.S. Towards a clinical grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng. Part C 2011, 12:1201-1210.
Kehoe D.E., Jing D., Lock L.T., Tzanakakis E.S. Scalable stirred suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A 2010, 16:405-421.
Caplan A.I., Correa D. The MSC: an injury drugstore. CellStemCell 2011, 9:11-15.
Gamie Z., MacFarlane R.J., Tomkinson A., Moniakis A., Tran G.T., Gamie Y., Mantalaris A., Tsiridis E. Skeletal tissue engineering using mesenchymal and embryonic stem cells: clinical and experimental data. Exp. Opin. Biol. Ther. 2014, 14:1611-1639.
Want A.J., Nienow A.W., Hewitt C.J., Coopman K. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regener. Med. 2012, 7:71-84.
Szczypka M., Splan D., Woolls H., Brandwein H. Single-use bioreactors and microcarriers: scalable technology for cell-based therapies. Bioprocess Int. 2014, 12:54-62.
Maul T.M., Chew D.W., Nieponice A., Vorp D.A. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 2011, 10:939-953.
Cherry R.S., Papoutsakis E.T. Growth and death rates of bovine embryonic kidney cells in turbulent microcarrier bioreactors. Bioprocess Eng. 1989, 4:81-89.
Cherry R.S., Papoutsakis E.T. Physical-mechanisms of cell-damage in microcarrier cell-culture bioreactors. Biotechnol. Bioeng. 1988, 32:1001-1014.
Croughan M.S., Hamel J.F., Wang D.I.C. Hydrodynamic effects on animal cell grown in microcarrier cultures. Biotechnol. Bioeng. 1987, 29:130-141.
Croughan M.S., Hamel J.F., Wang D.I.C. Effects of microcarriers concentration in animal cell culture. Biotechnol. Bioeng. 1988, 32:975-982.
Croughan M.S., Sayre E.S., Wang D.I.C. Viscous reduction of turbulent damage in animal cell culture. Biotechnol. Bioeng. 1989, 33:862-872.
Leung H.W., Chen A., Choo A.B.H., Reuveny S., Oh S.K.W. Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng. Part C 2011, 17:165-172.
Tseng P.C., Young T.H., Wang T.M., Peng H.W., Hou S.M., Yen M.L. Spontaneous osteogenesis of MSC cultured on 3D microcarriers through alteration of cytoskeletal tension. Biomaterial 2012, 33:556-564.
Rafig Q.A., Brosman K.M., Coopman K., Nienow A.W., Hewitt C.J. Culture of human mesenchymal stem cells on microcarriers in 5L stirred tank bioreactor. Biotechnol. Lett. 2013, 35:1233-1245.
Jossen V., Portner R., Kaiser S.C., Kraume M., Eibl D., Eibl R. Mass production of mesenchymal stem cells: Impact of bioreactor design and flow conditions on proliferation and differentiation. Cells and Biomaterials in Regenerative Medecine, InTech 2014, 119-174. D. Eberli (Ed.).
Jossen V., Kaiser S.C., Schirmaier C., Herrmann J., Tappe A., Eibl D., Siehoff A., Van den Bos C., Eibl R. Modification and quantification of a stirred single-use bioreactor for the improved expansion of human mesenchymal stem cell at benchtop scale. Pharm. Bioprocess 2014, 2:311-322.
Kaiser S.C., Jossen V., Shirmaier C., Eibl D., Van den Boss C., Eibl R. Fluid flow and cell proliferation of mesenchymal adipose derived stem cells in small scale stirred single use bioreactors. Chem. Eng. Technol. 2013, 85:95-102.
Kaiser S.C., Eibl R., Eibl D. Engineering characteristics of a single use stirred bioreactor at bench-scale: the Mobius CellReady 3L bioreactor as a case study. Eng. Life Sci. 2011, 11:359-368.
Schirmaier C., Jossen V., Kaiser S.C., Jungerkes F., Bril S., Safavi-Nab A., Siehoff A., Van den Bos C., Eibl D., Eibl R. Scale-up of adipose tissue-derived mesenchymal stem cell production in stirred single-use bioreactors under low-serum conditions. Eng. Life Sci. 2014, 14:292-303.
Nienow A.W., Rielly C.D., Brosnan K., Bargh N., Lee K., Coopman K., Hewitt C.J. The physical characterization of microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochem. Eng. J. 2013, 76:25-36.
Odeleye A.O.O., Marsh D.T.J., Osborne M.D., Lye G.J., Micheletti M. On the fluid dynamics of a laboratory scale single-use stirred bioreactor. Chem. Eng. Sci. 2014, 111:299-312.
Sieck J.B., Budach W.E., Suemeghy Z., Leist C., Villiger T.K., Morbidelli M., Soos M. Adaptation for survival: phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. J. Biotechnol. 2014, 189:94-103.
Oh S.K., Nienow A.W., Al-Rubeai M., Emery A.N. The effects of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J. Biotechnol. 1989, 12:45-61.
Oh S.K., Nienow A.W., Al-Rubeai M., Emery A.N. Further studies on the culture of mouse hybridomas in agitated bioreactor with and without continuous sparging. J. Biotechnol. 1992, 22:245-270.
Goday-Silva R., Mollet M., chalmers J.J. Evaluation of the effects of chronic hydrodynamical stresses on cultures of suspended CHO-6E6 cells. Biotechnol. Bioeng. 2009, 102:1119-1130.
Shenkman R.M., Godoy-Silva R., Papas K.K., Chalmers J.J. Effects of energy dissipation rate on islets Langerhans: implications for isolation and transplantations. Biotechnol. Bioeng. 2009, 103:413-423.
Neunstoecklin B., Steller M., Solacroup T., Broly H., Morbidelli M., Soos M. Determination of the maximum operating range of hydrodynamics stress in mammalian cell culture. Biotechnol. J. 2015, 194:100-109.
Nienow A.W. On the impeller circulation and mixing effectiveness in the turbulent flow regime. Chem. Eng. Sci. 1997, 52:2557-2565.
Van Suijdam J.C., Metz B. Influence of engineering variables upon the morphology of filamentous molds. Biotechnol. Bioeng. 1981, 23:111-148.
Smith J.J., Lilly M.D., Fox R.I. The effect of agitation on the morphology and penicillin production of Penicillium Chrysogenum. Biotechnol. Bioeng 1990, 35:1011-1023.
Justen P., Paul G.C., Nienow A.W., Thomas C.R. A mathematical model for agitation-induced fragmentation of Penicillium Chrysogenum. Bioprocess Eng. 1997, 18:7-16.
Marden Marshall E., Bakker A. Computational fluid mixing. Handbook of industrial mixing 2004, 1071-1170. Wiley Interscience, New Jersey. E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta (Eds.).
Derksen J.J. Numerical simulation of solids suspension in stirred tank. AIChE J. 2003, 49:2700-2714.
Sagaut P. Introduction À La Simulation Des Grandes Échelles Pour Les Écoulements De Fuide Imcompressible 1998, Springer, Paris.
Zwietering T.N. Suspending of solid particles in liquid by agitators. Chem. Eng. Sci. 1958, 8:244-253.
Joshi J.B., Nere N.K., Rane C.V., Murthy B.N., Mathpati C.S., Patwardhan A.W., Ranade V.V. CFD simulation of stirred tanks: comparison of turbulence models (part II: axial flow impellermultiple impellers, multiple dispersions). Can. J. Chem. Eng. 2011, 89:754-816.
Yeoh S.L., Papadakis G., Yianneskis M. Numerical simulation of turbulent flow characteristics in stirred vessel using the LES and RANS approaches with sliding/deforming mesh methodology. ChERD 2004, 82:834-848.
Mollet M., Ma N., Zhao Y., Brodkey R., Taticek R., Chalmers J.J. Bioprocess equipment: characterization of Energy dissipation rate and its potential to damage cells. Biotechnol. Prog. 2004, 20:1437-1448.
Zhu H., Nienow A.W., Bujalski W., Simmons M.J.H. Mixing studies in a model aerated bioreactor equipped with an up- or a down-pumping 'Elephant Ear' agitator: Power, hold-up and aerated flow field measurement. ChERD 2009, 87:307-317.
Roustan M. Agitation mélange, caractéristiques des mobiles d'agitation. Fascile J3802 des techniques de l'ingénieur 2005, Edition T.I, Paris, France.
Coufort C., Bouyer D., Liné A. Flocculation related to local hydrodynamics in a Taylor-Couette reactor and in a jar. Chem. Eng. Sci. 2005, 60:2179-2192.
Ayranci I., Machado M.B., Madej A.M., Derksen J.J., Nobes D.S., Kresta S.M. Effect of geometry on the mechanisms for off bottom solids suspension in a stirred tank. Chem. Eng. Sci. 2012, 79:163-176.
Ferrari C., Balandras F., Guedon E., Olmos E., Chevalot I., Marc A. Limiting cell aggregation during mesenchymal stem cell expansion on microcarriers. Biotechnol. Prog. 2012, 28:780-787.
Ferrari C., Olmos E., Balandras F., Nguyen T., Chevalot I., Guedon E., Marc A. Investigation of growth conditions for the expansion of porcine mesenchymal stem cells on microcarriers in stirred cultures. Appl. Biochem. Biotechnol. 2014, 172:1004-1017.
Simmons M.J.H., Zhu H., Bujalski W., Hewitt C.J., Nienow A.W. Mixing in a model bioreactor using agitators with a high solidity ratio and deep blades. ChERD 2007, 85:551-559.
Nienow A.W. Reactor engineering in large scale animal cell culture. Cytotechnology 2006, 50:9-33.