non-linear system identification; structural dynamics; Hilbert transform
Abstract :
[en] Although linear systems are now very well-understood in the context of structural dynamics,
this is not at all the case for nonlinear systems. In particular, despite huge advances in the mathematical theory of nonlinear dynamical systems, progress in the difficult field of nonlinear system identification (learning of models from measured input/output data) has largely remained fairly slow and incremental. This is not to say that there have been no major successes in the field in its comparatively short history, and the objective of this paper is to present some of the highlights, as perceived by the authors, and to pave the way for a second paper discussing new developments and possibilities for the future.
Ahmed (I.) 1987 Ph.D. Thesis, Department of Engineering, Victoria University of Manchester. Developments in Hilbert transform procedures with applications to linear and non-linear structures.
Al-Hadid (M.A) & Wright (J.R.) 1989 Mechanical Systems and Signal Processing 3 pp.269-290. Developments in the force-state mapping technique for non-linear systems and the extension to the location of non-linear elements in a lumped-parameter system.
Al-Hadid (M.A) & Wright (J.R.) 1990 Mechanical Systems and Signal Processing 4 pp.463-482. Application of the force-state mapping approach to the identification of non-linear systems.
Al-Hadid (M.A) & Wright (J.R.) 1992 Mechanical Systems and Signal Processing 6 pp.383-401. Estimation of mass and modal mass in the identification of nonlinear single and multi DOF systems using the force-state mapping approach.
Barrett (J.F.) 1963 Journal of Electronics and Control 15 pp.567-615. The use of functionals in the analysis of nonlinear systems.
Bedrossan (E.) & Rice (S.O.) 1971 Proceedings IEEE 59 pp.1688-1707. The output properties of Volterra systems driven by harmonic and Gaussian inputs.
Belingardi (G.) & Campanile (P.) 1990 Proceedings of 15th International Seminar in Modal Analysis and Structural Dynamics, Leuven, Belgium. Improvement of the shock absorber dynamic simulation by the restoring force mapping method.
Caughey (T.K.) 1963 Journal of the Acoustical Society of America 35 pp.1706-1711. Equivalent linearisation techniques.
Billings (S.A.) & Tsang (K.M.) 1989a Mechanical Systems and Signal Processing 3 pp.319-339. Spectral analysis for nonlinear systems, part I: parametric non-linear spectral analysis.
Billings (S.A.) & Tsang (K.M.) 1989b Mechanical Systems and Signal Processing 3 pp.341-359. Spectral analysis for nonlinear systems, part II: interpretation of nonlinear frequency response functions.
Billings (S.A.), Chen (S.) & Backhouse (R.J.) 1989c Journal of Mechanical Systems and Signal Processing 3 pp.123-142. Identification of linear and nonlinear models of a turbocharged automotive diesel engine.
Billings (S.A.) & Chen (S.) 1989d International Journal of Control 50 pp.1897-1923. Extended model set, global data and threshold model identification of severely nonlinear systems.
Billings (S.A.), Jamaluddin (H.B.) & Chen (S.) 1991a Mechanical Systems and Signal Processing 5 pp.233-255. A comparison of the backpropagation and recursive prediction error algorithms for training neural networks.
Bose (A.G.) 1956 Technical Report 309, Research Laboratory of Electronics, MIT. A theory of nonlinear systems.
Brancaleoni (F.), Spina (D.) & Valente (C.) 1992 Proceedings of 13 th IMACS, Dublin, Ireland. A free oscillation based technique for the identification of nonlinear dynamic systems.
Brilliant (M.B.) 1958 Technical Report 345, Research Laboratory of Electronics, MIT. Theory of the analysis of nonlinear systems.
Caughey (T.K.) 1963 Journal of the Acoustical Society of America 35 pp.1706-1711. Equivalent linearisation techniques.
Chance (J.E.), Worden (K.) & Tomlinson (G.R.) 1998 Journal of Sound and Vibration 213 pp.915-941. Frequency domain analysis of NARX neural networks.
Chatterjee (A.) & Vyas (N.S.) 2003 Journal of Sound and Vibration 268 pp.657-678. Non-linear parameter estimation through Volterra series using the method of recursive iteration through harmonic probing.
Chen (S.), Billings (S.A.) & Liu (Y.P.) 1987 International Journal of Control 50 pp.1873-1896. Orthogonal least-squares methods and their application to nonlinear system identification.
Crandall (S.H.) 2006 Structural Control and Health Monitoring 13 pp.27-40. A halfcentury of stochastic equivalent linearisation.
Crawley (E.F.) & Aubert (A.C.) 1986a AIAA Journal 24 pp.155-162. Identification of nonlinear structural elements by force-state mapping.
Crawley (E.F.) & O'Donnell (K.J.) 1986b AIAA Paper 86-1013 pp.659-667. Identification of nonlinear system parameters in joints using the force-state mapping technique.
Dodd (T.J) & Harris (C.J) 2002a International Journal of System Science 33 pp.737- 750. Identification of nonlinear time series via kernels.
Dodd (T.J.) & Harrison (R.F.) 2002b Proceedings of the 2002 IFAC World Congress, CD-Rom. Estimating Volterra filters in Hilbert spaces.
Dodd (T.J.) & Harrison (R.F.) 2002c Proceedings of the 2002 IFAC World Congress, CD-Rom. A new solution to Volterra series estimation.
Dinca (F.) & Teodosiu (C.) 1973 Nonlinear and Random Vibrations. Academic Press.
Duym (S.) & Schoukens (J.) 1995 Mechanical Systems and Signal Processing 9 pp.139- 158. Design of excitation signals for the restoring force surface method.
Duym (S.), Schoukens (J,) & Guillame (P.) 1996 International Journal of Analytical and Experimental Modal Analysis 11 pp.116-132. A local restoring force surface method.
Ewins (D.J.) 1984 Modal Testing: Theory and Practice. Research Studies Press.
Fei (B.J.) 1984 Rapport de stage de fin d'etudes, ISMCM, St Ouen, Paris, France. Transformées de Hilbert numeriques.
Feldman (M.) 1994a Mechanical Systems and Signal Processing 8 pp.119-127. Nonlinear system vibration analysis using the Hilbert transform - I. Free vibration analysis method 'FREEVIB'.
Feldman (M.) 1994b Mechanical Systems and Signal Processing 8 pp.309-318. Nonlinear system vibration analysis using the Hilbert transform - I. Forced vibration analysis method 'FORCEVIB'.
George (D.A.) 1959 Technical Report 355, Research Laboratory of Electronics, MIT. Continuous nonlinear systems.
Gifford (S.J.) & Tomlinson (G.R.) 1990 Journal of Sound and Vibration 135 pp.289- 317. Recent advances in the application of functional series to non-linear structures.
Hagedorn (P.) & Wallaschek (J.) 1987 in Non-Linear Stochastic Dynamic Engineering Systems (edited by F.Ziegler and G.I.Schueller), Springer-Verlag pp.23-32. On equivalent harmonic and stochastic linearisation for nonlinear shock-absorbers.
Hunter (N.), Paez (T.) & Gregory (D.L) 1989 Proceedings of the 7th International Modal Analysis Conference, Los Angeles pp.843-869. Force-state mapping using experimental data.
Khan (A.A.) & Vyas (N.S.) 1999 Journal of Sound and Vibration 221 pp.805-821. Non-linear parameter using Volterra and Wiener theories.
Kerschen (G.), Golinval (J.C.) & Worden (K.) 2001 Journal of Sound and Vibration 244 pp.597-613. Theoretical and experimental identification of a non-linear beam.
Kerschen (G.), Worden (K.), Vakakis (A.F.) & Golinval (J.C.) 2007 This Proceedings. Nonlinear system identification in structural dynamics: current status and future directions.
King (N.E.) & Worden (K.) Proceedings of 5th International Conference on Recent Advances in Structural Dynamics, Southampton pp.1056-1065. An expansion technique for calculating Hilbert transforms.
Korenburg (M.), Billings (S.A.) & Liu (Y.P.) 1988 International Journal of Control 51 pp.193-210. An orthogonal parameter estimation algorithm for nonlinear stochastic systems.
Leontaritis (I.J.) & Billings (S.A.) 1985a International Journal of Control 41 pp.303- 328. Input-output parametric models for Nonlinear systems. Part I: deterministic nonlinear systems.
Leontaritis (I.J.) & Billings (S.A.) 1985b International Journal of Control 41 pp.329- 344. Input-output parametric models for Nonlinear systems. Part II: stochastic nonlinear systems.
Liu (H.), Vinh (T.), Chouychai (T.) & Djouder (M.) 1987 Proceedings of the 5th International Modal Analysis Conference, London. Second order transfer function: computation and physical interpretation.
Masri (S.F.) & Caughey (T.K.) 1979 Journal of Applied Mechanics 46 pp.433-447. A nonparametric identification technique for nonlinear dynamic problems.
Masri (S.F.), Sassi (H.) & Caughey (T.K.) 1982 Journal of Applied Mechanics 49. Nonparametric identification of nearly arbitrary nonlinear systems.
Masri (S.F.), Miller (R.K.), Saud (A.F.) & Caughey (T.K.) 1987a Journal of Applied Mechanics 54 pp.918-922. Identification of nonlinear vibrating structures: part I - formalism.
Masri (S.F.), Miller (R.K.), Saud (A.F.) & Caughey (T.K.) 1987b Journal of Applied Mechanics 54 pp.923-929. Identification of nonlinear vibrating structures: part II - applications.
Meskell (C.), Fitzpatrick (J.A.) & Rice (H.J.) 2001 Mechanical Systems and Signal Processing 15 pp.75-85. Application of force-state mapping to a non-linear fluid-elastic system.
Mohammad (K.S.), Worden (K.) & Tomlinson (G.R.) 1991 Journal of Sound and Vibration 152 pp.471-499. Direct parameter estimation for linear and nonlinear structures.
Newland (D.E.) 1984 An Introduction to Random Vibrations and Spectral Analysis. Second Edition. Longman.
Paez (T.L.) 2006 Mechanical Systems and Signal Processing 20 pp.1783-1818. The history of random vibrations through 1958.
Palm (G.) & Poggio (T.) 1977 SIAM Journal on Applied Mathematics 33(2). The Volterra representation and the Wiener expansion: validity and pitfalls.
Peyton Jones (J.C.) & Billings (S.A.) 1989 International Journal of Control 50 pp.1925-1940. Recursive algorithm for computing the frequency response of a class of non-linear difference equation models.
Schetzen (M.) 1980 The Volterra and Wiener Theories of Nonlinear Systems. John Wiley Interscience Publication. New York.
Shin (K.) & Hammond (J.K.) 1998 Journal of Sound and Vibration 218 pp.405-418. Force-state mapping method of a chaotic dynamical system.
Simmons (G.F.) 1963 Introduction to Topology and Modern Analysis. McGraw-Hill, New York.
Simon (M.) & Tomlinson (G.R.) 1984 Journal of Sound and Vibration 96 pp.421-436. Use of the Hilbert transform in modal analysis of linear and nonlinear structures.
Simon (M.) 1983 Ph.D Thesis, Department of Engineering, Victoria University of Manchester. Developments in the modal analysis of linear and non-linear structures.
Staszewski (W.J.) 2000 Proceedings of the Institution of Mechanical Engineers Part C - Journal of Mechanical Engineering Science 214 pp.1339-1353. Analysis of non-linear systems using wavelets.
Storer (D.M.) & Tomlinson (G.R.) 1991 Proceedings of the 16 th International Seminar on Modal Analysis, Florence, Italy. Higher order frequency response functions and their relation to practical structures.
Surace (C.),Worden (K.) & Tomlinson (G.R.) 1992a Proceedinds of the I.Mech.E., Part D - Journal of Automobile Engineering. On the nonlinear characteristics of automotive shock absorbers.
Tawfiq (I.) & Vihn (T.) 2003 Mechanical Systems and Signal Processing 17 pp.379-407. Contribution to the extension of modal analysis to non-linear structures using Volterra functional series.
Thouverez (F.) & Jezequel (L.) 1996 Journal of Sound and Vibration 189 pp.193-213. Identification of NARMAX models on a modal base.
Volterra (V.) 1959 Theory of Functionals and Integral equations. Dover Publications, New York.
Wan (Y.), Dodd (T.J.) & Harrison (R.F.) 2003 Research Report 842, The University of Sheffield, Department of Automatic Control and Systems Engineering. A kernel method for non-linear systems identification - infinite degree Volterra series estimation.
Worden (K.) & Tomlinson (G.R.) 1988 Proceedings of Third International Conference on Recent Advances in Structural Dynamics, Southampton pp.299-308. Identification of linear/nonlinear restoring force surfaces in single- and multi-mode systems.
Worden (K.) 1990 Mechanical Systems and Signal Processing 4 pp.295-319. Data processing and experiment design for the restoring force surface method, Part I: integration and differentiation of measured data.
Worden (K.) 1990 Mechanical Systems and Signal Processing 4 pp.321-344. Data processing and experiment design for the restoring force surface method, Part II: choice of excitation signal.
Worden (K.) & Tomlinson (G.R.) 1991 Proceedings of 9th International Modal Analysis Conference, Florence. An experimental study of a number of nonlinear SDOF systems using the restoring force surface method.
Worden (K.), Wright (J.R.), Al-Hadid (M.A.) & Mohammad (K.S.) 1992 Journal of Analytical and Experimental Modal Analysis 9 pp.35-55. Experimental identification of multi degree-of-freedom nonlinear systems using restoring force surface methods.
Worden (K.) & Manson (G.) 1998 Journal of Sound and Vibration 217 pp.781-789. Random vibrations of a Duffing oscillator using the Volterra series.
Worden (K.) & Manson (G.) 1999 Journal of Sound and Vibration 226 pp.397-405. Random vibrations of a multi-degree-of-freedom non-linear system using the Volterra series.
Worden (K.) & Tomlinson (G.R.) 2001 Nonlinearity in Structural Dynamics. Detection, Modelling and Identification. Institute of Physics.
Wray (J.) & Green (G.G.R) 1994 Biological Cybernetics 71, pp.187-195. Calculation of the Volterra kernels of nonlinear dynamic systems using an artificial neural network.
Yang (Y.) & Ibrahim (S.R.) 1985 Transactions of the ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design 107 pp.60-66. A nonparametric identification technique for a variety of discrete nonlinear vibrating systems.