Friction Stir Welding; Finite Element Method; Arbitrary Lagrangian Eulerian
Abstract :
[en] Friction Stir Welding (FSW) process is a relatively recent welding process (patented in 1991). FSW is a solid-state joining process during which materials to be joined are not melted. During the FSW process, the behavior of the material is at the interface between solid mechanics and fluid mechanics. In this paper, a 3D numerical model of the FSW process with a non-cylindrical tool based on a solid formulation is compared to another one based on a fluid formulation. Both models use advanced numerical techniques such as the Arbitrary Lagrangian Eulerian (ALE) formulation, remeshing or the Orthogonal Sub-Grid Scale method (OSS). It is shown that these two formulations essentially deliver the same results.
Disciplines :
Materials science & engineering
Author, co-author :
Bussetta, Philippe; Université de Liège - ULiège
Dialami; UPC Barcelona
Chiumenti, Michele; UPC Barcelona
Agelet de Saracibar, Carlos; UPC Barcelona
Cervera, Miguel; UPC Barcelona
Boman, Romain ; Université de Liège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Ponthot, Jean-Philippe ; Université de Liège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
3D numerical models using a fluid or a solid formulation of FSW processes with non-cylindrical pin
Publication date :
November 2015
Journal title :
Advanced Modeling and Simulation in Engineering Sciences
Thomas WM, Nicholas ED. Friction stir welding for the transportation industries. Mater Design. 1997;18(4–6):269–73. doi:10.1016/S0261-3069(97)00062-9.
Agelet de Saracibar C, Chiumenti M, Cervera M, Dialami N, Seret A. Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of friction stir welding processes. Arch Comput Methods Eng. 2014;21(1):3–37. doi:10.1007/s11831-014-9094-z.
Feulvarch E, Roux J-C, Bergheau J-M. A simple and robust moving mesh technique for the finite element simulation of friction stir welding. J Comput Appl Math. 2013;246:269–77. doi:10.1016/j.cam.2012.07.013.
Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C, Ponthot, JP. Material flow visualization in friction stir welding via particle tracing. Int J Material Form. 2013. doi:10.1007/s12289-013-1157-4.
Assidi M, Fourment L, Guerdoux S, Nelson T. Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf. 2010;50(2):143–55. doi:10.1016/j.ijmachtools.2009.11.008.
Santiago D, Lombera G, Urquiza S, Agelet de Saracibar C, Chiumenti M. Modelado termo-mecánico del proceso de friction stir welding utilizando la geometría real de la herramienta. Revista Internacional de Métodos Numéricos para Cálculo y Dise no en Ingeniería 26. 2010. p. 293–303
Buffa G, Fratini L, Arregi B, Penalva M. A new friction stir welding based technique for corner fillet joints: experimental and numerical study. Int J Material Form. 2010;3(1):1039–42. doi:10.1007/s12289-010-0948-0.
Heurtier P, Jones MJ, Desrayaud C, Driver JH, Montheillet F, Allehaux D. Mechanical and thermal modeling of friction stir welding. J Mater Process Technol. 2006;171(3):348–57. doi:10.1016/j.jmatprotec.2005.07.014.
He X, Gu F, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66. doi:10.1016/j.pmatsci.2014.03.003.
Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C. An apropos kinematic framework for the numerical modelling of friction stir welding. Comput Struct. 2013;117:48–57. doi:10.1016/j.compstruc.2012.12.006.
Bussetta P, Dialami N, Boman R, Chiumenti M, Agelet de Saracibar C, Cervera M, Ponthot JP. Comparison of a fluid and a solid approach for the numerical simulation of friction stir welding with a non-cylindrical pin. Steel Res Int. 2014;85:968–79. doi:10.1002/srin.201300182.
Toumpis AI, Galloway AM, Arbaoui L, Poletz N. Thermomechanical deformation behaviour of dh36 steel during friction stir welding by experimental validation and modelling. Sci Technol Weld Join. 2014;19(8):653–63. doi:10.1179/1362171814Y.0000000239.
He W, Luan B, Xin R, Xu J, Liu Q. A multi-scale model for description of strain localization in friction stir welded magnesium alloy. Comput Mater Sci. 2015;104:162–71. doi:10.1016/j.commatsci.2015.04.002.
Simoes F, Rodrigues DM. Material flow and thermo-mechanical conditions during friction stir welding of polymers: literature review, experimental results and empirical analysis. Mater Design. 2014;59:344–51. doi:10.1016/j.matdes.2013.12.038.
Chiumenti M, Cervera M, Agelet de Saracibar C, Dialami N. Numerical modeling of friction stir welding processes. Comput Methods Appl Mech Eng. 2013;254:353–69. doi:10.1016/j.cma.2012.09.013.
Donea J, Huerta A, Ponthot JP, Rodríguez-Ferran A. Arbitrary Lagrangian Eulerian methods. In: Stein E, de Borst R, Hughes TJR, editors. Encyclopedia of Computational Mechanics. New York: Wiley;2004. doi:10.1002/0470091355.ecm009.
Boman R, Ponthot J-P. Efficient ALE mesh management for 3D quasi-eulerian problems. Int J Numer Methods Eng. 2012;92:857–90. doi:10.1002/nme.4361.
Boman R, Ponthot J-P. Enhanced ALE data transfer strategy for explicit and implicit thermomechanical simulations of high-speed processes. Int J Impact Eng. 2013;53:62–73. doi:10.1016/j.ijimpeng.2012.08.007.
Agelet de Saracibar C, Chiumenti M, Valverde Q, Cervera M. On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity. Comput Methods Appl Mech Eng. 2006;195:1224–51. doi:10.1016/j.cma.2005.04.007.
Cervera M, Chiumenti M, Valverde Q, Agelet de Saracibar C. Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng. 2003;192:5249–63.
Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M. A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. Int J Plast. 2004;20:1487–504. doi:10.1016/j.ijplas.2003.11.009.
Agelet de Saracibar C, Cervera M, Chiumenti M. On the formulation of coupled thermoplastic problems with phase-change. Int J Plast. 1999;15:1–34.
Cervera M, Agelet de Saracibar C, Chiumenti M. Thermo-mechanical analysis of industrial solidification processes. Int J Numer Methods Eng. 1999;46:1575–91.
Bussetta P, Boman R, Ponthot J-P. Efficient 3D data transfer operators based on numerical integration. Int J Numer Methods Eng. 2015;102(3–4):892–929. doi:10.1002/nme.4821.
Ponthot JP. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int J Plast. 2002;18:91–126. doi:10.1016/S0749-6419(00)00097-8.
Simar A, Pardoen T, de Meester B. Effect of rotational material flow on temperature distribution in friction stir welds. Sci Technol Weld Join. 2007;12(4):324–33. doi:10.1179/174329307X197584.
Gerlich A, Yamamoto M, North TH. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds. Metall Mater Trans A. 2007;38(6):1291–302. doi:10.1007/s11661-007-9155-0.
Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC. Flow patterns during friction stir welding. Mater Charact. 2002;49(2):95–101. doi:10.1016/S1044-5803(02)00362-5.
Hattel JH, Sonne MR, Tutum CC. Modelling residual stresses in friction stir welding of al alloys-a review of possibilities and future trends. Int J Adv Manuf Technol. 2015;76(9–12):1793–805. doi:10.1007/s00170-014-6394-2.
Sonne MR, Tutum CC, Hattel JH, Simar A, de Meester B. The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024–T3. J Mater Process Technol. 2013;213(3):477–86. doi:10.1016/j.jmatprotec.2012.11.001.