Ané C., Blachère S., Chafaï D., Fougères P., Gentil I., Malrieu F., Roberto C., Scheffer G. Sur les inégalités de Sobolev logarithmiques. Panor. Synthèses 2000, vol. 10. Société Mathématique de France, Paris, with a preface by Dominique Bakry and Michel Ledoux.
Artstein S., Ball K., Barthe F., Naor A. Solution of Shannon's problem on the monotonicity of entropy. J. Amer. Math. Soc. 2004, 17(4):975-982.
Artstein S., Ball K.M., Barthe F., Naor A. On the rate of convergence in the entropic central limit theorem. Probab. Theory Related Fields 2004, 129(3):381-390.
Bakry D., Émery M. Diffusions hypercontractives. Lecture Notes in Math. 1985, vol. 1123:179-206. Springer.
Ball K., Barthe F., Naor A. Entropy jumps in the presence of a spectral gap. Duke Math. J. 2003, 119(1):41-63.
Ball K., Nguyen V. Entropy jumps for random vectors with log-concave density and spectral gap preprint. arxiv:1206.5098v3.
Barbour A.D., Johnson O., Kontoyiannis I., Madiman M. Compound Poisson approximation via information functionals. Electron. J. Probab. 2010, 15:1344-1368.
Barron A.R. Entropy and the central limit theorem. Ann. Probab. 1986, 14(1):336-342.
Bobkov S.G., Chistyakov G.P., Götze F. Fisher information and the central limit theorem. Probab. Theory Related Fields 2013, in press. 10.1007/s00440-013-0500-5.
Brown L.D. A proof of the central limit theorem motivated by the Cramér-Rao inequality. Statistics and Probability: Essays in Honor of C.R. Rao 1982, 141-148. North-Holland, Amsterdam.
Carbery A., Wright J. Distributional and Lq norm inequalities for polynomials over convex bodies in Rn. Math. Res. Lett. 2001, 8(3):233-248.
Carlen E., Soffer A. Entropy production by block variable summation and central limit theorems. Comm. Math. Phys. 1991, 140(2):339-371.
Chatterjee S. Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Related Fields 2009, 143(1-2):1-40.
Chatterjee S., Meckes E. Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 2008, 4:257-283.
Chen L.H.Y., Goldstein L., Shao Q.-M. Normal Approximation by Stein's Method. Probab. Appl. (N. Y.) 2011, Springer, Heidelberg.
Csiszár I. Informationstheoretische Konvergenzbegriffe im Raum der Wahrscheinlichkeitsverteilungen. Magyar Tud. Akad. Mat. Kutató Int. Közl. 1962, 7:137-158.
Deya A., Noreddine S., Nourdin I. Fourth moment theorem and q-Brownian chaos. Comm. Math. Phys. February 2012, in press. 10.1007/s00220-012-1631-8.
Dudley R.M. Real Analysis and Probability. Wadsworth & Brooks/Cole Math. Ser. 1989, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.
Götze F. On the rate of convergence in the multivariate CLT. Ann. Probab. 1991, 19(2):724-739.
Y. Hu, F. Lu, D. Nualart, Convergence of densities of some functionals of Gaussian processes, preprint, 2013.
Johnson O. Information Theory and the Central Limit Theorem 2004, Imperial College Press, London.
Johnson O., Barron A. Fisher information inequalities and the central limit theorem. Probab. Theory Related Fields 2004, 129(3):391-409.
Johnson O., Suhov Y. Entropy and random vectors. J. Stat. Phys. 2001, 104(1):145-165.
Kemp T., Nourdin I., Peccati G., Speicher R. Wigner chaos and the fourth moment. Ann. Probab. 2012, 40(4):1577-1635.
Kullback S. A lower bound for discrimination information in terms of variation. IEEE Trans. Inform. Theory 1967, 4.
Kumar Kattumannil S. On Stein's identity and its applications. Statist. Probab. Lett. 2009, 79(12):1444-1449.
Ledoux M. Chaos of a Markov operator and the fourth moment condition. Ann. Probab. 2012, 40(6):2439-2459.
Ley C., Swan Y. Local Pinsker inequalities via Stein's discrete density approach. IEEE Trans. Inform. Theory 2013, 59(9):5584-5591.
Ley C., Swan Y. Stein's density approach and information inequalities. Electron. Commun. Probab. 2013, 18(7):1-14.
Linnik J.V. An information-theoretic proof of the central limit theorem with Lindeberg conditions. Theory Probab. Appl. 1959, 4:288-299.
Marinucci D., Peccati G. Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. London Math. Soc. Lecture Note Ser. 2011, vol. 389. Cambridge University Press, Cambridge.
Nourdin I. Selected Aspects of Fractional Brownian Motion 2012, Springer-Verlag.
Nourdin I., Nualart D., Poly G. Absolute continuity and convergence of densities for random vectors on Wiener chaos. Electron. J. Probab. 2012, 18(22):1-19.
Nourdin I., Peccati G. Cumulants on the Wiener space. J. Funct. Anal. 2010, 258:3775-3791.
Nourdin I., Peccati G. Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs. ALEA Lat. Am. J. Probab. Math. Stat. 2010, 7:341-375.
Nourdin I., Peccati G. Normal Approximations with Malliavin Calculus: from Stein's Method to Universality. Cambridge Tracts in Math. 2012, Cambridge University Press.
Nourdin I., Peccati G., Reinert G. Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 2009, 257:593-609.
Nourdin I., Peccati G., Reinert G. Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann. Probab. 2010, 38(5):1947-1985.
Nourdin I., Peccati G., Réveillac A. Multivariate normal approximation using Stein's method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 2010, 46(1):45-58.
Nourdin I., Poly G. Convergence in total variation on Wiener chaos. Stochastic Process. Appl. 2012, in press.
Nourdin I., Rosiński J. Asymptotic independence of multiple Wiener-ItÔ integrals and the resulting limit laws. Ann. Probab. 2013, in press.
Nualart D. The Malliavin Calculus and Related Topics. Probab. Appl. (N. Y.) 2006, Springer-Verlag, Berlin. second ed.
Nualart D., Ortiz-Latorre S. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 2008, 118(4):614-628.
Nualart D., Peccati G. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 2005, 33(1):177-193.
Park S., Serpedin E., Qaraqe K. On the equivalence between Stein and de Bruijn identities. IEEE Trans. Inform. Theory 2012, 58(12):7045-7067.
Pinsker M.S. Information and Information Stability of Random Variables and Processes 1964, translated and edited by Amiel Feinstein, Holden-Day Inc., San Francisco, CA.
Reinert G., Roellin A. Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition. Ann. Probab. 2009, 37(6):2150-2173.
Sason I. Entropy bounds for discrete random variables via maximal coupling. IEEE Trans. Inform. Theory 2013, in press.
Sason I. Improved lower bounds on the total variation distance for the Poisson approximation. Statist. Probab. Lett. 2013, 83(10):2422-2431.
Shimizu R. On Fisher's amount of information for location family. A Modern Course on Statistical Distributions in Scientific Work 1975, 305-312. Springer.
Stein C. Approximate Computation of Expectations. IMS Lecture Notes Monogr. Ser. 1986, vol. 7. Institute of Mathematical Statistics, Hayward, CA.
Talagrand M. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 1996, 6(3):587-600.
Viens F.G. Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent. Stochastic Process. Appl. 2009, 119(10):3671-3698.