[en] Atom chips use current flowing in lithographically patterned wires to produce microscopic magnetic traps for atoms. The density distribution of a trapped cold atom cloud reveals disorder in the trapping potential, which results from meandering current flow in the wire. Roughness in the edges of the wire is usually the main cause of this behaviour. Here, we point out that the edges of microfabricated wires normally exhibit self-affine roughness. We investigate the consequences of this for disorder in atom traps. In particular, we consider how closely the trap can approach the wire when there is a maximum allowable strength of the disorder. We comment on the role of roughness in future atom--surface interaction experiments.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Moktadir, Zakaria
Darquié, B.
Kraft, Michaël ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
Hinds, Edward A.
Language :
English
Title :
The effect of self-affine fractal roughness of wires on atom chips
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
E.A. Hinds, C.J. Vale and M.G. Boshier, Phys. Rev. Lett. 86 1462 (2001).
J. Fortágh, A. Grossmann and C. Zimmermann, Phys. Rev. Lett. 81 5310 (1998).
J. Denschlag, D. Cassettari and J. Schmiedmayer, Phys. Rev. Lett. 82 2014 (1999).
M. Key, I.G. Hughes, W. Rooijakkers, et al., Phys. Rev. Lett. 84 1371 (2000).
J. Fortágh and C Zimmermann, Rev. Mod. Phys. 79 235 (2007).
S. Eriksson, M. Trupke, H.F. Powell, et al., Eur. Phys. J. D 35 135 (2005).
C.O. Gollasch, Z. Moktadir, M. Kraft, et al., J. Micro. Mech. Micro. Eng. 15 S39 (2005).
C. Henkel, J. Schmiedmayer and C. Westbrook, Euro. Phys. J. D 35 1 (2006) and following articles.
M.P.A. Jones, C.J. Vale, D. Sahagun, et al., Phys. Rev. Lett. 91 080401 (2003).
J. Fortágh, H. Ott, S. Kraft, et al., Phys. Rev. A 66 041604 (2002).
M.P.A. Jones, C.J. Vale, D. Sahagun, et al., J. Phys. B 37 L15 (2004).
S. Kraft, A. Günther, H. Ott, et al., J. Phys. B 35 L469 (2002).
T. Schumm, J. Esteve, C. Figl, et al., Eur. Phys. J. D 32 171 (2005).
D.W. Wang, M.D. Lukin and E. Demier, Phys. Rev. Lett. 92 076802 (2004).
E. Koukharenko, Z. Moktadir, M. Kraft, et al., Sensors and Actuators A 115 600 (2004).
G. Lewis, Z. Moktadir, C.O. Gollasch, et al., Proceedings of 16th MicroMechanics Europe Workshop, Göteberg, Sweden, 4-6 September (2005).
P. Meakin, Fractals, Scaling and Growth Far From Equilibrium (Cambridge University Press, Cambridge, 1998).
A. L. Barabasi and H.E. Stanly, Fractal Concept in Surface Growth (Cambridge University Press, Cambridge, 1995).
V. Constantoudis, G.P. Patsis, A. Tserepi, et al., J. Vac. Sci. Tech. B21 1019 (2003).
G. Palasantzas, Phys. Rev. B 48 14472 (1993).
V. Constantoudis, G.P. Patsis, L.H.A. Leunissen, et al. J. Vac. Sci. Tech. B 22 1974 2004).
S. Groth, P. Krüger, S. Wildermuth, et al., Appl. Phys. Lett. 85 2980 (2004).
L. Pricoupenko, H. Perrin and M. Olshanii (Editors), Quantum Gases in Low Dimensions, special issue of J. Phys. IV 116 1 (2004).
J.E. Lye, L. Fallani, M. Modugno, et al., Phys. Rev. Lett. 95 070401 (2005).
T. Schulte, S. Drenkelforth, J. Kruse, et al., Phys. Rev. Lett. 95 170411 (2005).
D. Clément, A.F. Varón, M. Hugbart, et al., Phys. Rev. Lett. 95 170409 (2005).
J.-B. Trebbia, C.L. Garrido Alzar, R. Cornelussen, et al., arXiv:quant-ph/0701207 (2006).
E.A. Hinds and V. Sandoghdar, Phys. Rev. A 43 398 (1991).
E.A. Hinds, Adv. At. Mol. Opt. Phys., Cavity Quantum Electrodynamics, Supplement 2, edited by Paul R. Berman (Academic Press, Inc., New York, 1994), p. 1.
J.M. Obrecht, R.J. Wild, M. Antezza, et al., Phys. Rev. Lett. 99 063201 (2007).
Y. Lin, I. Teper, C. Chin, et al., Phys. Rev. Lett. 92 050404 (2004).
S. Dimopoulos and A.A. Geraci, Phys. Rev. D 68 124021 (2003).
P. Krüger, S. Wildermuth, S. Hofferberth, et al., J. Phys.: Conf. Ser. 19 56 (2005).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.