[en] The paper describes the basic ideas and the main features of a new class of constitutive laws, in the framework of incrementally non-linear constitutive equations. CLoE is a generic name for that new class of laws, with reference to consistency at the limit surface, and explicit localization analysis. A top-down analysis of the model is presented, and illustrated by examples.
Hill R. The Mathematical Theory of Plasticity, Oxford Univ. Press; 1950.
Chambon R., Renoud‐Lias B. (1979) Incremental non linear stress‐strain relationship for soils and integration by FEM. Numerical Methods in Geomechanics , Vol. 1, Balkema; 405-413.
Chambon R., ‘Contribution à la modélisation numérique non linéaire des sols’, Thèse de doctorat es sciences, USMG‐INPG; 1981.
Royis P., Formulation mathématique de lois de comportement, modélisation numérique de problémes aux limites en mécanique des solides déformables Univ. de Grenoble; 1986.
Gudehus G. Mechanics of geomaterials , chapter Requirements for constitutive relations for soils, Wiley; 1985, 47-63.
Desrues J., Chambon R. (1989) Shear band analysis for granular materials: the question of incremental non linearity. Ingenieur Archiv 59:187-196.
Lanier J. (1976) Etude expérimentale des lois de comportement en grandes déformation à l'aide d'une presse réellement tridimensionnelle. Cahiers du groupe français de rhéologie 4(2):53-60.
Saada A.S. Hollow cylinder torsional device: their advantages and limitations , Advanced Triaxial Testing for Soil and Rocks—ASTM STP 977, ASTM; 1988, 766-795.
Arthur J.R.F. Cubical devices: versatility and constraints , Advanced Triaxial Testing for Soil and Rocks—ASTM STP 977, ASTM; 1988, 743-765.
Joer H., Lanier J., Desrues J., Flavigny E. (1992) Ig2e: a new shear apparatus to study the behaviour of granular materials. Geotechnical Testing J. ASTM 15(2):129-137.
Arthur J.R.F., Menzies B.K. (1972) Inherent anisotropy in a sand. Géotechnique 22(1):115-128.
Arthur J.R.F., Chua K.S., Dunstan T. (1977) Induced anisotropy in a sand. Géotechnique 22(1):13-30.
Bishop A.W., Green G.E. (1965) The influence of end restraint on the compression strength of a cohensionless soil. Géotechnique 15(3):243-266.
Kirkpatrick W.M., Belshaw D.J. (1968) On the interpretation of the triaxial test. Géotechnique 18(3):336-350.
Colliat‐Dangus J.L., Desrues J., Foray P. (1988) Triaxial testing of granular soil under elevated cell pressure. Advanced Triaxial Testing for Soil and Rocks‐ASTM STP 977 , ASTM; 290-310.
Desrues J., Mokni M., Mazerolle F., ‘Tomodensitométrie et localisation dans les sables’, in Comptes‐rendus du X ECSMFE‐Florence mai 91; 1991.
Desrues J., Chambon R., Mokni M., Mazerolle F., ‘Void ratio evolution inside the shear bands in triaxial sand samples studied by ct technique’, 3d Int. Workshop in Localisation and Bifurcation for Soils and Rocks–Aussois 6–9 September 93; 1993.
Dresher A., Vardoulakis I. (1982) Geometric softening in triaxial tests on granular material. Géotechnique 32(4):291-303.
Hill R. (1962) Acceleration waves in solids. J. Mech. Phys. Solids 10:1-16.
Mandel J., Rhéologie et Mécanique des Sols, chapter Conditions de stabilité et Postulat de Drucker, pp.; 1964, 58-68.
Rice J.R. (1976) The localisation of plastic deformation. Theoretical and Applied Mechanics, North Holland; .
Vardoulakis I. (1980) Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Num. Anal. Meth. Geom. 4:103-119.
Chambon R., Desrues J. (1985) Bifurcation par localisation et non linéarité incrémentale: un exemple heuristique d'analyse complète. Plastic Instability , Presses ENPC Paris; 101-119.
Loret B. (1987) Non‐linéarité incrémentale et localisation des déformations: quelques remarques. J. Mécanique Théor, Apliquée 6(3):423-459.
Kolymbas D. (1991) An outline of hypoplasticity. Arch. appl. mech. 61:143-151.
Hill R. (1959) Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7:209-225.
Darve F., Boulon M., Chambon R. (1978) Loi rhéologique incrémentale des sols. J. Mécanique 17(5):679-716.
Nelson I. (1977) Constitutive models for use in numerical computations. Plastic and Long Term Effects, A. A. Balkema; .
Gudehus G. (1979) A comparison of some constitutive laws for soils under radially symmetric loadings and unloadings. Numerical Methods in Geomechanics , W. Wittke, Balkema; 1309-1323.
Chambon R. (1984) Une loi rhéologique incrémentale non linéaire pour les sols non‐visqueux. J. M. T. A. 3(4):521-544.
Desrues J., ‘La localisation de la déformation dans les matériaux granulaires’, These de Doctorat es Sciences, USMG et INPG; 1984.
Kolymbas D. (1987) A novel constitutive law for soils. Constitutive Laws for Ingeneering Materials , Elsevier, New York; 319-326.
Lanier J. (1979) Etude d'une loi de comportement pour des matériaux non visqueux. J. Mécanique 18(1):175-195.
Valanis K.C. (1971) A theory of viscousplasticity without a yield surface. Arch. mech. 23:517-551.
Lade P.V., Duncan J.M. (1975) Elastoplastic stress‐strain theory for cohesionless soil. Proc. ASCE 101:1037-1053.
Matsuoka H., Nakai T., ‘A new failure criterion for soils in three‐dimensional stresses’, in Proc. IUTAM Conf. Def. Fail. Gran. Media, Delft (NL); 1982, 253-263.
van Eekelen H.A.M. (1980) Isotropic yield surface in three dimensions for use in soil mechanics. Int. J. Num. Anal. Meth. in Geom. 4:89-101.
Chambon R., Desrues J., Hammad W., Charlier R., ‘CLoE, Consistance et Localisation Explicite: une loi incrémentale non linéaire’, Rapport interne du Groupe de Géomécanique IMG; 1990.
Hammad W., ‘Modélisation non linéaire et étude expérimentale de la localisation dans les sables’, Thèse de doctorat, UJF‐INPG; 1991.