[en] Drying induced shrinkage of geomaterials may have a strong effect on geostructure stability and deformation. Settlement of foundations, fracture opening on slopes, roads, tunnel walls may be due to drying shrinkage. However, there is still a lack of knowledge concerning shrinkage evolution in time and shrinkage propagation within the material. In this study, the shrinkage of a specific clayey rock, Boom Clay, under drying conditions is experimentally investigated. This rock is a deep geological formation which is under study for high-level and long-life radioactive waste storage in Belgium. Two experimental campaigns are here presented. The first one, based on vapour equilibrium drying technique and completed by sample size manual measurement, aims to characterize the material shrinkage in balanced states. The second one, based on convective drying technique completed by shape monitoring using X-ray tomography, aims to analyse how shrinkage develops before reaching a steady state. Both approaches put in evidence the shrinkage anisotropy of this structurally bedded rock, with a ratio around 2 between the direction of maximum strains and the direction of minimum strains. However, the two drying techniques also provide complementary results, as the relation between the amount of shrinkage and the retention curve (for the uniform drying imposed with saline solutions) and the kinetics of shrinkage propagation inside the material (for the non-uniform drying imposed with air convection).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aertsens, M., Wemaere, I., and Wouters, L. 2004. Spatial variability of transport parameters in the boom clay. Applied Clay Science, 26(1-4): 37-45. doi:10.1016/j.clay.2003.09.015.
Alonso, E.E., Gens, A., and Josa, A. 1990. A constitutive model for partially saturated soils. Géotechnique, 40(3): 405-430. doi:10.1680/geot.1990.40.3.405.
Alves, C., Sequeira Braga, M., and Hammecker, C. 1996. Water transfer and decay of granitic stones in monuments. Comptes rendus de l’Académie des sciences. Série 2. Sciences de la Terre et des Planètes, 323(5): 397-402.
Amarasiri, A.L., Kodikara, J.K., and Costa, S. 2011. Numerical modelling of desiccation cracking. International Journal for Numerical and Analytical Methods in Geomechanics, 35(1): 82-96. doi:10.1002/nag.894.
Banaszak, J., and Kowalski, S. 2005. Theoretical and experimental analysis of stresses and fractures in clay like materials during drying. Chemical Engineering and Processing: Process Intensification, 44(4): 497-503. doi:10.1016/j.cep.2004.06.012.
Bastiaens, W., Bernier, F., and Li, X.L. 2007. Selfrac: experiments and conclusions on fracturing, self-healing and self-sealing processes in clays. Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14): 600-615. doi:10.1016/j.pce.2006.04.026.
Ben Nasrallah, S., and Pere, P. 1988. Detailed study of a model of heat and mass transfer during convective drying of porous media. International Journal of Heat and Mass Transfer, 31(5): 957-967. doi:10.1016/0017-9310(88)90084-1.
Bennamoun, L., Kahlerras, L., Michel, F., Courard, L., Salmon, T., Fraikin, L., Belhamri, A., and Léonard, A. 2013. Determination of moisture diffusivity during drying of mortar cement: experimental and modeling study. International Journal of Energy Engineering, 3(1): 1-6.
Bernier, F., Li, X.L., and Bastiaens, W. 2007. Twenty-five years’ geotechnical observation and testing in the tertiary boom clay formation. Géotechnique, 57(2): 229-237. doi:10.1680/geot.2007.57.2.229.
Bishop, A. 1976. The influence of system compressibility on the observed porepressure response to an undrained change in stress in saturated rock. Géotechnique, 26(2): 371-375. doi:10.1680/geot.1976.26.2.371.
Blatz, J.A., Cui, Y.-J., and Oldecop, L. 2009. Vapour equilibrium and osmotic technique for suction control. In Laboratory and field testing of unsaturated soils. Springer. pp. 49-61.
Chen, G., Sillen, X., Verstricht, J., and Li, X.L. 2011. Atlas iii in situ heating test in boom clay: field data, observation and interpretation. Computers and Geotechnics, 38(5): 683-696. doi:10.1016/j.compgeo.2011.04.001.
Dehandschutter, B., Vandycke, S., Sintubin, M., Vandenberghe, N., and Wouters, L. 2005. Brittle fractures and ductile shear bands in argillaceous sediments: interferences from Oligocene Boom Clay (Belgium). Journal of Structural Geology, 27(6): 1095-1112. doi:10.1016/j.jsg.2004.08.014.
Delage, P., Le, T.T., Tang, A.-M., Cui, Y.-J., and Li, X.-L. 2007a. Suction effects in deep boom clay block samples. Technical report. Ecole Nationale des Ponts et Chaussees (CERMES, Institut Navier), Paris, France; EURIDICE Group, Mol, Belgium.
Delage, P., Le, T.T., Tang, A.-M., Cui, Y.-J., and Li, X.-L. 2007b. Suction effects in deep boom clay block samples. Géotechnique, 57(1): 239-244. doi:10.1680/geot.2007.57.2.239.
Fleureau, J.-M., Kheirbek-Saoud, S., Soemitro, R., and Taibi, S. 1993. Behavior of clayey soils on drying-wetting paths. Canadian Geotechnical Journal, 30(2): 287-296. doi:10.1139/t93-024.
François, B., Labiouse, V., Dizier, A., Marinelli, F., Charlier, R., and Collin, F. 2014. Hollow cylinder tests on boom clay: Modelling of strain localization in the anisotropic excavation damaged zone. Rock Mechanics and Rock Engineering, 47(1): 71-86. doi:10.1007/s00603-012-0348-5.
Garrels, R., and Christ, C. 1965. Solutions, minerals, and equilibria. Harper & Row, New York. pp. 213-233.
Gens, A., Vaunat, J., Garitte, B., and Wileveau, Y. 2007. In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Géotechnique, 57(2): 207-228. doi:10.1680/geot.2007.57.2.207.
Gerard, P., Charlier, R., Chambon, R., and Collin, F. 2008. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water Resources Research, 44(5): W00C02. doi:10.1029/2007WR006500.
Gerard, P., Léonard, A., Masekanya, J., Charlier, R., and Collin, F. 2010. Study of the soil-atmosphere moisture exchanges through convective drying tests in non-isothermal conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 34(12): 1297-1320. doi:10.1002/nag.866.
Granger, L. 1995. Comportement différé du béton dans les enceintes de centrales nucléaires: analyse et modélisation. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées.
Hedan, S., Cosenza, P., Valle, V., Dudoignon, P., Fauchille, A.-L., and Cabrera, J. 2012. Investigation of the damage induced by desiccation and heating of tournemire argillite using digital image correlation. International Journal of Rock Mechanics and Mining Sciences, 51: 64-75. doi:10.1016/j.ijrmms.2012.01.001.
Kodikara, J. 2012. New framework for volumetric constitutive behaviour of compacted unsaturated soils. Canadian Geotechnical Journal, 49(11): 1227-1243. doi:10.1139/t2012-084.
Lanczos, C. 1956. Applied analysis. Prentice-Hall.
Léonard, A. 2002. Étude du séchage convectif de boues d’épuration-Suivi de la texture par microtomographie arayons X. Ph.D. thesis, Université de Liège.
Léonard, A., Blacher, S., Marchot, P., and Crine, M. 2002. Use of X-ray microtomography to follow the convective heat drying of wastewater sludges. Drying Technology, 20(4-5): 1053-1069. doi:10.1081/DRT-120004013.
Lima, A., Romero, E., Piña, Y., Gens, A., and Li, X.-L. 2012. Water retention properties of two deep Belgian clay formations. In Unsaturated soils: research and applications. Springer. pp. 179-184.
Loret, B., and Khalili, N. 2002. An effective stress elastic-plastic model for unsaturated porous media. Mechanics of Materials, 34(2): 97-116. doi:10.1016/S0167-6636(01)00092-8.
May, B., and Perré, P. 2002. The importance of considering exchange surface area reduction to exhibit a constant drying flux period in foodstuffs. Journal of Food Engineering, 54(4): 271-282. doi:10.1016/S0260-8774(01)00213-8.
Mertens, J., Vandenberghe, N., Wouters, L., and Sintubin, M. 2003. The origin and development of joints in the Boom Clay Formation (Rupelian) in Belgium. In Subsurface sediment mobilization. Special Publication 216. Geological Society, London. pp. 309-321. doi:10.1144/GSL.SP.2003.216.01.20.
Miny, L. 2013. Etude expérimentale et numérique du comportement anisotrope de l’argile de Boom. Master’s thesis report, Université de Liège.
Mertens, J., Bastiaens, W., and Dehandschutter, B. 2004. Characterisation of induced discontinuities in the boom clay around the underground excavations (URF, Mol, Belgium). Applied Clay Science, 26(1-4): 413-428. doi:10.1016/j.clay.2003.12.017.
Musielak, G., and Mierzwa, D. 2009. Permanent strains in clay-like material during drying. Drying Technology, 27(7-8): 894-902. doi:10.1080/07373930903041616.
Musielak, G., and Sliwa, T. 2013. Numerical simulation of clay cracking due to drying. In Proceedings of Eurodrying 2013, Paris.
Nadeau, J., and Puigalli, J. 1995. Detailed study of a model of heat and mass transfer during convective drying of porous media. Lavoisier.
Nowamooz, H., and Masrouri, F. 2010. Mechanical behaviour of expansive soils after several drying and wetting cycles. Geomechanics and Geoengineering: An International Journal, 5(4): 213-221. doi:10.1080/17486025.2010.521588.
Ortiz, L., Volckaert, G., and Mallants, D. 2002. Gas generation and migration in boom clay, a potential host rock formation for nuclear waste storage. Engineering Geology, 64(2-3): 287-296. doi:10.1016/S0013-7952(01)00107-7.
Otsu, N. 1975. A threshold selection method from gray-level histograms. Automatica, 11(285-296): 23-27.
Péron, H., Delenne, J.-Y., Laloui, L., and El Youssoufi, M.S. 2009. Discrete element modelling of drying shrinkage and cracking of soils. Computers and Geotechnics, 36(1-2): 61-69. doi:10.1016/j.compgeo.2008.04.002.
Peron, H., Laloui, L., Hueckel, T., and Hu, L.B. 2009. Desiccation cracking of soils. European Journal of Environmental and Civil Engineering, 13(7-8): 869-888. doi:10.1080/19648189.2009.9693159.
Prime, N., Fraikin, L., Leonard, A., Charlier, R., and Levasseur, S. 2014. Experimental investigation of hydro-mechanical coupling during clay drying. In Proceedings of International Drying Symposium, Lyon.
Prime, N., Housni, Z., Fraikin, L., Léonard, A., Charlier, R., and Levasseur, S. 2015. On water transfer and hydraulic connection layer during the convective drying of rigid porous material. Transport in Porous Media, 106: 47-72. doi: 10.1007/s11242-014-0390-8.
Romero, E., Gens, A., and Lloret, A. 1999. Water permeability, water retention and microstructure of unsaturated compacted boom clay. Engineering Geology, 54(1-2): 117-127. doi:10.1016/S0013-7952(99)00067-8.
Sherwood, T. 1929a. The drying of solids I. Industrial & Engineering Chemistry, 21(1): 12-16. doi:10.1021/ie50229a004.
Sherwood, T. 1929b. The drying of solids II. Industrial & Engineering Chemistry, 21(10): 976-980. doi:10.1021/ie50238a021.
Tang, A.-M., and Cui, Y.-J. 2005. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of mx80 clay. Canadian Geotechnical Journal, 42(1): 287-296. doi:10.1139/t04-082.
Tripathy, S., Rao, K.S., and Fredlund, D.G. 2002. Water content-void ratio swell-shrink paths of compacted expansive soils. Canadian Geotechnical Journal, 39(4): 938-959. doi:10.1139/t02-022.
Van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892-898. doi:10.2136/sssaj1980.03615995004400050002x.
Vinegar, H., and Wellington, S. 1987. Tomographic imaging of three-phase flow experiments. Review of Scientific Instruments, 58(1): 96-107. doi:10.1063/1.1139522.
Volckaert, G., Bernier, F., Alonso, E., Gens, A., Samper, J., Villar, M., Martin-Martin, P., Cuevas, J., Campos, et al. 1996. Thermal-hydraulic-mechanical and geochemical behaviour of the clay barrier in radioactive waste repositories (model development and validation)-final report. Technical report. European Commission.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.