Bullmore E., Sporns O., 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. Vol. 10, No. 3, pp. 186-98
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models. Massachusetts: MIT Press.
Dempster, A., 1972. Covariance selection. Biometrics, Vol. 28, pp. 157-75.
Banerjee, O., El Ghaoui, L., and d'Aspremont, A., 2008. Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. J. Mach. Learn. Res., Vol. 9, pp. 485-516.
Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S., 2012. Latent Variable Graphical Model Selection via Convex Optimization, Ann. Stat., Vol. 40, No. 4, pp. 1935-67.
Jolliffe, I. T., 2002. Principal Component Analysis. Sec. ed. (Springer).
Hyvärinen, A., Karhunen, J., and Oja, E., 2001. Independent Component Analysis. John Wiley and Son.
Stoica, P., and Moses, R. L., 1997. Introduction to spectral analysis. Prentice Hall, Upper Saddle River, N. J.
Brillinger, D., 1981. Time Series: Data Analysis and Theory. New York: Holden-Day.
Songsiri, J., and Vandenberghe, L., 2010. Topology selection in graphical models of autoregressive processes. J. Mach. Learn. Res., Vol. 11, pp. 2671-2705.
Zorzi, M., and Sepulchre, R., 2015. AR identification of Latentvariable Graphical Models. Submitted http://arxiv. org/abs/1405. 0027.
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J., 2010. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trend. Mach. Learn., Vol. 3, No. 1, pp. 1-122.
Grant M., Boyd S., and Ye, Y., 2005. CVX: Matlab software for disciplined convex programming. Available from www. stanford. edu/ boyd/cvx/
Dahlhaus, R., 2000. Graphical interaction models for multivariate time series. Metrika, Vol. 51, No. 2, pp. 157-72.
Horn, R. A., and Johnson, C. R. (1990). Matrix analysis. Cambridge University Press.
Byrnes, C., Gusev, S., and Lindquist, A. 1998. A convex optimization approach to the rational covariance extension problem SIAM J. Optimiz., Vol. 37, No. 1, pp. 211-29, 1998
Cover, T., and Thomas, J. 1991. Information Theory. New York: Wiley.
Berg, E., Schmidt, M., Friedlander, M., and Murphy, K., 2008. Group sparsity via linear-time projection. Dept. of Computer Science, Univ. of British Columbia, Vancouver, BC, Canada, Technical Report.
Ouyang, Y., Chen, Y., Lan, G., and Pasiliao, E., 2014. An accelerated linearised alternating direction method of multipliers. Submitted http://arxiv. org/pdf/1401. 6607v3. pdf.
Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A., Vol. 79, No. 8, pp. 2554-58.
Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., Phillips, C., Soddu, A., Moonen, G., and Laureys, S., 2011. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci., Vol. 23, pp. 570-8.