[en] Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for
signaling is unclear. One possibility is that some forms of signaling require a distinct
membrane lipid composition, found at cilia. We found that the ciliary membrane
contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide,
PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created
by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2
levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary level
s of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)2-binding protein Tulp3.
Increasing ciliary PI(4,5)P2levels or conferring the ability to bind PI(4)P on Tulp3
increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Garcia-Gonzalo, F. R.
Phua, S. C.
Roberson, E. C.
Garcia III, G.
Abedin, M.
Schurmans, Stéphane ; Université de Liège > Département de sciences fonctionnelles (DSF) > Biochimie métabolique vétérinaire
Inoue, T
Reiter, J. F.
Language :
English
Title :
Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Andrews D., Nelson D.L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim. Biophys. Acta 1979, 550:174-187.
Bae Y.K., Kim E., L'hernault S.W., Barr M.M. The CIL-1 PI 5-phosphatase localizes TRP Polycystins to cilia and activates sperm in C. elegans. Curr. Biol. 2009, 19:1599-1607.
Berbari N.F., Johnson A.D., Lewis J.S., Askwith C.C., Mykytyn K. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol. Biol. Cell 2008, 19:1540-1547.
Bielas S.L., Silhavy J.L., Brancati F., Kisseleva M.V., Al-Gazali L., Sztriha L., Bayoumi R.A., Zaki M.S., Abdel-Aleem A., Rosti R.O., et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 2009, 41:1032-1036.
Bloodgood R.A., Woodward M.P., Young W.W. Unusual distribution of a glycolipid antigen in the flagella of Chlamydomonas. Protoplasma 1985, 185:123-130.
Cameron D.A., Pennimpede T., Petkovich M. Tulp3 is a critical repressor of mouse hedgehog signaling. Dev. Dyn. 2009, 238:1140-1149.
Caspary T., Larkins C.E., Anderson K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 2007, 12:767-778.
Chen J.K., Taipale J., Young K.E., Maiti T., Beachy P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 2002, 99:14071-14076.
Czarnecki P.G., Shah J.V. The ciliary transition zone: from morphology and molecules to medicine. Trends Cell Biol. 2012, 22:201-210.
Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006, 443:651-657.
Forte M., Satow Y., Nelson D., Kung C. Mutational alteration of membrane phospholipid composition and voltage-sensitive ion channel function in paramecium. Proc. Natl. Acad. Sci. USA 1981, 78:7195-7199.
Garcia-Gonzalo F.R., Reiter J.F. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol. 2012, 197:697-709.
Garcia-Gonzalo F.R., Corbit K.C., Sirerol-Piquer M.S., Ramaswami G., Otto E.A., Noriega T.R., Seol A.D., Robinson J.F., Bennett C.L., Josifova D.J., et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 2011, 43:776-784.
Gealt M.A., Adler J.H., Nes W.R. The sterols and fatty acids from purified flagella of Chlamydomonas reinhardtii. Lipids 1981, 16:133-136.
Goetz S.C., Anderson K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 2010, 11:331-344.
Hammond G.R., Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim. Biophys. Acta 2015, 1851:746-758.
Hammond G.R., Fischer M.J., Anderson K.E., Holdich J., Koteci A., Balla T., Irvine R.F. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 2012, 337:727-730.
Hammond G.R., Machner M.P., Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 2014, 205:113-126.
Hildebrandt F., Benzing T., Katsanis N. Ciliopathies. N. Engl. J. Med. 2011, 364:1533-1543.
Humbert M.C., Weihbrecht K., Searby C.C., Li Y., Pope R.M., Sheffield V.C., Seo S. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl. Acad. Sci. USA 2012, 109:19691-19696.
Jacoby M., Cox J.J., Gayral S., Hampshire D.J., Ayub M., Blockmans M., Pernot E., Kisseleva M.V., Compère P., Schiffmann S.N., et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 2009, 41:1027-1031.
Jin H., White S.R., Shida T., Schulz S., Aguiar M., Gygi S.P., Bazan J.F., Nachury M.V. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 2010, 141:1208-1219.
Johnson C.M., Chichili G.R., Rodgers W. Compartmentalization of phosphatidylinositol 4,5-bisphosphate signaling evidenced using targeted phosphatases. J. Biol. Chem. 2008, 283:29920-29928.
Jonah M., Erwin J.A. The lipids of membraneous cell organelles isolated from the ciliate, Tetrahymena pyriformis. Biochim. Biophys. Acta 1971, 231:80-92.
Kaneshiro E.S., Matesic D.F., Jayasimhulu K. Characterizations of six ethanolamine sphingophospholipids from Paramecium cells and cilia. J. Lipid Res. 1984, 25:369-377.
Kennedy K.E., Thompson G.A. Phosphonolipids: localization in surface membranes of Tetrahymena. Science 1970, 168:989-991.
Liem K.F., Ashe A., He M., Satir P., Moran J., Beier D., Wicking C., Anderson K.V. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell Biol. 2012, 197:789-800.
Lin Y.C., Niewiadomski P., Lin B., Nakamura H., Phua S.C., Jiao J., Levchenko A., Inoue T., Rohatgi R., Inoue T. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 2013, 9:437-443.
Luo N., West C.C., Murga-Zamalloa C.A., Sun L., Anderson R.M., Wells C.D., Weinreb R.N., Travers J.B., Khanna H., Sun Y. OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum. Mol. Genet. 2012, 21:3333-3344.
Luo N., Kumar A., Conwell M., Weinreb R.N., Anderson R., Sun Y. Compensatory role of inositol 5-phosphatase INPP5B to OCRL in primary cilia formation in oculocerebrorenal syndrome of Lowe. PLoS ONE 2013, 8:e66727.
Montesano R. Inhomogeneous distribution of filipin-sterol complexes in the ciliary membrane of rat tracheal epithelium. Am. J. Anat. 1979, 156:139-145.
Mukhopadhyay S., Jackson P.K. The tubby family proteins. Genome Biol. 2011, 12:225.
Mukhopadhyay S., Wen X., Chih B., Nelson C.D., Lane W.S., Scales S.J., Jackson P.K. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 2010, 24:2180-2193.
Mukhopadhyay S., Wen X., Ratti N., Loktev A., Rangell L., Scales S.J., Jackson P.K. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 2013, 152:210-223.
Norman R.X., Ko H.W., Huang V., Eun C.M., Abler L.L., Zhang Z., Sun X., Eggenschwiler J.T. Tubby-like protein 3 (TULP3) regulates patterning in the mouse embryo through inhibition of Hedgehog signaling. Hum. Mol. Genet. 2009, 18:1740-1754.
Patterson V.L., Damrau C., Paudyal A., Reeve B., Grimes D.T., Stewart M.E., Williams D.J., Siggers P., Greenfield A., Murdoch J.N. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum. Mol. Genet. 2009, 18:1719-1739.
Qin J., Lin Y., Norman R.X., Ko H.W., Eggenschwiler J.T. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl. Acad. Sci. USA 2011, 108:1456-1461.
Reiter J.F., Skarnes W.C. Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev. 2006, 20:22-27.
Roberson E.C., Dowdle W.E., Ozanturk A., Garcia-Gonzalo F.R., Li C., Halbritter J., Elkhartoufi N., Porath J.D., Cope H., Ashley-Koch A., et al. TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J. Cell Biol. 2015, 209:129-142.
Rohatgi R., Milenkovic L., Scott M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007, 317:372-376.
Santos N., Reiter J.F. A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J. Cell Sci. 2014, 127:1500-1510.
Sasaki T., Takasuga S., Sasaki J., Kofuji S., Eguchi S., Yamazaki M., Suzuki A. Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 2009, 48:307-343.
Smith J.D., Snyder W.R., Law J.H. Phosphonolipids in Tetrahymena cilia. Biochem. Biophys. Res. Commun. 1970, 39:1163-1169.
Souto-Padrón T., de Souza W. Freeze-fracture localization of filipin-cholesterol complexes in the plasma membrane of Trypanosoma cruzi. J. Parasitol. 1983, 69:129-137.
Stauffer T.P., Ahn S., Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 1998, 8:343-346.
Suh B.C., Inoue T., Meyer T., Hille B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 2006, 314:1454-1457.
Tran P.V., Haycraft C.J., Besschetnova T.Y., Turbe-Doan A., Stottmann R.W., Herron B.J., Chesebro A.L., Qiu H., Scherz P.J., Shah J.V., et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet. 2008, 40:403-410.
Tsujishita Y., Guo S., Stolz L.E., York J.D., Hurley J.H. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell 2001, 105:379-389.
Tyler K.M., Fridberg A., Toriello K.M., Olson C.L., Cieslak J.A., Hazlett T.L., Engman D.M. Flagellar membrane localization via association with lipid rafts. J. Cell Sci. 2009, 122:859-866.
Ueno T., Falkenburger B.H., Pohlmeyer C., Inoue T. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci. Signal. 2011, 4:ra87.
Vieira O.V., Gaus K., Verkade P., Fullekrug J., Vaz W.L., Simons K. FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc. Natl. Acad. Sci. USA 2006, 103:18556-18561.
Wen X., Lai C.K., Evangelista M., Hongo J.A., de Sauvage F.J., Scales S.J. Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol. Cell. Biol. 2010, 30:1910-1922.
Yavari A., Nagaraj R., Owusu-Ansah E., Folick A., Ngo K., Hillman T., Call G., Rohatgi R., Scott M.P., Banerjee U. Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev. Cell 2010, 19:54-65.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.