[en] Over the last few years, a wide variety of background subtraction algorithms have been proposed for the detection of moving objects in videos acquired with a static camera. While much effort have been devoted to the development of robust background models, the automatic spatial selection of useful features for representing the background has been neglected. In this paper, we propose a generic and tractable feature selection method. Interesting contributions of this work are the proposal of a selection process coherent with the segmentation process and the exploitation of global foreground models in the selection strategy. Experiments conducted on the ViBe algorithm show that our feature selection technique improves the segmentation results.
Research Center/Unit :
Department of Electrical Engineering and Computer Science (Montefiore Institute), Signal and Image Exploitation (INTELSIG)
Disciplines :
Computer science
Author, co-author :
Braham, Marc ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Van Droogenbroeck, Marc ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
A Generic Feature Selection Method for Background Subtraction Using Global Foreground Models
Publication date :
October 2015
Event name :
Advanced Concepts for Intelligent Vision Systems (ACIVS)
Event place :
Catania, Italy
Event date :
26-29 October 2015
Audience :
International
Main work title :
Advanced Concepts for Intelligent Vision Systems (ACIVS), Catania 26-29 October 2015
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Xiao, J., Liao, L., Hu, J., Chen, Y., Hu, R., Exploiting Global Redundancy in Big Surveillance Video Data for Efficient Coding (2015) Cluster Computing, 18 (2), pp. 531-540
Karsch, K., Liu, C., Kang, S.B., DepthTransfer: Depth Extraction from Video Using Non-Parametric Sampling (2014) IEEE Trans. Pattern Anal. Mach. Intell, 36 (11), pp. 2144-2158
Oliver, N.M., Rosario, B., Pentland, A.P., A Bayesian Computer Vision System for Modeling Human Interactions (2000) IEEE Trans. Pattern Anal. Mach. Intell, 22 (8), pp. 831-843
Kim, Z., Real time object tracking based on dynamic feature grouping with background subtraction (2008) IEEE Int. Conf. Comput. Vision and Pattern Recognition (CVPR), pp. 1-8
Jodoin, J.-P., Bilodeau, G.-A., Saunier, N., Urban tracker: Multiple object tracking in urban mixed traffic (2014) IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 885-892
Jodoin, P.-M., Pièrard, S., Wang, Y., Van Droogenbroeck, M., Overview and benchmarking of motion detection methods (2014) Background Modeling and Foreground Detection for Video Surveillance, , Bouwmans, T., Porikli, F., Hoferlin, B., Vacavant, A. (eds.), chap. 24. Chapman and Hall/CRC
Bouwmans, T., Traditional and Recent Approaches in Background Modeling for Foreground Detection: An Overview (2014) Computer Science Review, 11, pp. 31-66
Elgammal, A., Harwood, D., Davis, L., Non-parametric model for background subtraction (2000) ECCV 2000. LNCS, 1843, pp. 751-767. , In: Vernon, D. (ed.), Springer, Heidelberg
Barnich, O., Van Droogenbroeck, M., ViBe: A Universal Background Subtraction Algorithm forVideo Sequences. IEEETrans (2011) Image Process, 20 (6), pp. 1709-1724
Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Detecting Moving Objects, Ghosts, and Shadows in Video Streams (2003) IEEE Trans. Pattern Anal. Mach. Intell, 25 (10), pp. 1337-1342
Gruenwedel, S., Van Hese, P., Philips, W., An edge-based approach for robust foreground detection (2011) ACIVS 2011. LNCS, 6915, pp. 554-565. , In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.), Springer, Heidelberg
Heikkilä, M., Pietikäinen, M., A Texture-Based Method for Modeling the Background and Detecting Moving Objects (2006) IEEE Trans. Pattern Anal. Mach. Intell, 28 (4), pp. 657-662
Bilodeau, G.-A., Jodoin, J.-P., Saunier, N., Change detection in feature space using local binary similarity patterns (2013) International Conference on Computer and Robot Vision (CRV), pp. 106-112
Silva, C., Bouwmans, T., Frélicot, C., An extended center-symmetric local binary pattern for background modeling and subtraction in videos (2015) Int. Conf. Comput. Vision Theory and Applicat. (VISAPP), pp. 395-402
Chen, M., Yang, Q., Li, Q., Wang, G., Yang, M.-H., Spatiotemporal background subtraction using minimum spanning tree and optical flow (2014) Eccv2014,Part VII. LNCS, 8695, pp. 521-534. , Fleet, D., Pajdla, T., Schiele, B.,Tuytelaars, T. (eds.), Springer, Heidelberg
Freedman, B., Shpunt, A., Machline, M., Arieli, Y., (2012) Depth Mapping Using Projected Patterns, , US patent 8150142
Li, L., Huang, W., Gu, Y.-H., Tian, Q., Statistical Modeling of Complex Backgrounds for Foreground Object Detection (2004) IEEE Trans. Image Process, 13 (11), pp. 1459-1472
Parag, T., Elgammal, A., Mittal, A., A framework for feature selection for background subtraction (2006) IEEE Int. Conf. Comput. Vision and Pattern Recognition (CVPR), 2, pp. 1916-1923
Schapire, R.E., Singer, Y., Improved Boosting Algorithms Using Confidence-rated Predictions (1999) Machine Learning, 37 (3), pp. 297-336
Grabner, H., Bischof, H., On-line boosting and vision (2006) IEEE Int. Conf. Comput. Vision and Pattern Recognition (CVPR), 1, pp. 260-267
Grabner, H., Roth, P., Grabner, M., Bischof, H., Autonomous learning of a robust background model for change detection (2006) IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance (PETS), pp. 39-46
Grabner, H., Leistner, C., Bischof, H., Time dependent on-line boosting for robust background modeling (2007) Int. Conf. Comput. Vision Theory and Applicat. (VISAPP), pp. 612-618
Javed, S., Sobral, A., Bouwmans, T., Jung, S., OR-PCA with dynamic feature selection for robust background subtraction (2015) ACM Symposium on Applied Computing, pp. 86-91. , ACM, New York
St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R., SuBSENSE: A Universal Change Detection Method with Local Adaptive Sensitivity (2015) IEEE Trans. Image Process, 24 (1), pp. 359-373
St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R., A self-adjusting approach to change detection based on background word consensus (2015) IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 990-997
López-Rubio, F., L´opez-Rubio, E.: Features for Stochastic Approximation Based Foreground Detection. Comp (2015) Vision and Image Understanding, 133, pp. 30-50
Viola, P., Jones, M., Rapid object detection using a boosted cascade of simple features (2001) IEEE Int. Conf. Comput. Vision and Pattern Recognition (CVPR), 1, pp. 511-518
Han, B., Davis, L.S., Density-Based Multifeature Background Subtraction with Support Vector Machine (2012) IEEE Trans. Pattern Anal. Mach. Intell, 34 (5), pp. 1017-1023
Barandela, R., Sánchez, J., García, V., Rangel, E., Strategies for Learning in Class Imbalance Problems (2003) Pattern Recognition, 36 (3), pp. 849-851
Braham, M., Lejeune, A., Van Droogenbroeck, M., A physically motivated pixelbased model for background subtraction in 3D images (2014) International Conference on 3D Imaging (IC3D), pp. 1-8
Fawcett, T., An Introduction to ROC Analysis (2006) Pattern Recognition Letters, 27 (8), pp. 861-874
Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P., Changedetection.Net: A new change detection benchmark dataset (2012) IEEE Int. Conf. Comput. Vision and Pattern Recognition Workshop (CVPRW), pp. 1-8
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.