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Abstract. Over the last few years, a wide variety of background sub-
traction algorithms have been proposed for the detection of moving ob-
jects in videos acquired with a static camera. While much effort have
been devoted to the development of robust background models, the auto-
matic spatial selection of useful features for representing the background
has been neglected. In this paper, we propose a generic and tractable
feature selection method. Interesting contributions of this work are the
proposal of a selection process coherent with the segmentation process
and the exploitation of global foreground models in the selection strat-
egy. Experiments conducted on the ViBe algorithm show that our feature
selection technique improves the segmentation results.

Keywords: background subtraction, feature selection, foreground mod-
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1 Introduction

Detecting moving objects in video sequences provides a valuable information for
various applications such as video coding [1], depth extraction from video [2], or
intelligent vision systems [3]. A straightforward approach for motion detection
is background subtraction, typically used in tracking systems, for its ability to
detect moving objects without any assumption about their appearance, size or
orientation [4,5]. The process consists in building a model of the static scene,
which is named background, and updating this model over time to account for
luminance and structural changes in the scene. The background model is sub-
tracted from the current frame, and pixels or regions with a noticeable difference
are assumed to belong to moving objects (the foreground). A background sub-
tractor is thus a two-class classifier (foreground or background).

While conceptually simple, background subtraction still remains a difficult
task because of the variety of challenging situations that occur in real world
scenes. For instance, pixels may be erroneously classified as foreground in the
presence of camera jitter, dynamic background (such as swaying trees or sea
waves) or illumination changes. On the other hand, camouflage (i.e. foreground
and background sharing similar colors) generate many false negative detections.



To deal with these challenging situations, a plethora of background subtrac-
tion techniques have been proposed (see [6] or [7] for a recent and comprehensive
classification of these techniques including more than 300 references). They dif-
fer, among other things, in the features chosen to build the background model.
According to Bouwmans [7], five categories of features are frequently used: color
features, edge features, texture features, motion features, and stereo features.
Color features refer mainly to the color components of color spaces which can
be processed separately or jointly. The RGB domain is the most popular [8,9],
but some authors exploit other color spaces such as HSV [10] or YCbCr [11] in
order to increase invariance with respect to brightness changes, and thus illumi-
nation changes and shadows. Gradient features [12] and texture features such as
LBP histogram [13] or its variants [14,15] offer a robust solution to illumination
changes but might be unsuitable in image areas with poor texture. Motion fea-
tures, such as optical flow [16], should be particularly interesting for scenes where
the foreground is moving continuously (absence of temporarily stopped objects)
and depth features acquired with range cameras such as the Kinect camera [17]
are (to some degree) insensitive to lighting conditions but cannot be computed
when objects are far from the camera.

In conclusion, there seems to be no agreement on a unique feature performing
better than any other feature independently of the background and foreground
properties. Surprisingly, this is not considered in practice. Almost all existing
background subtraction techniques operate with a uniform feature map in the
sense that the features used to model the background and perform the detection
are the same for all pixels of the image, thus ignoring the non-uniformity of
the spatial distribution of background properties and neglecting the foreground
properties. Recently, Bouwmans concluded in a comprehensive survey paper [7]
that feature selection in background subtraction is still an open problem and
may be one of the main future developments in this field.

In this paper, we propose a generic method for the spatial selection of the
most significant features and we assess it for the ViBe technique. The main nov-
elties of our work are: (1) a dedicated feature selection process that is coherent
with the background subtraction process, and (2) the use of global foreground
models in the selection strategy. The rest of the paper is organized as follows.
Section 2 reviews the related work and presents the main limitations of existing
selection methods. We provide the details of our method in Section 3. Experi-
ments showing the benefits of our method are described in Section 4. Finally,
Section 5 concludes the paper.

2 Related work

Li et al. [18] were among the first to express the need for modeling distinct part
of the image with different features. They describe the background image as con-
sisting of two pixel categories, static pixels and dynamic pixels, and incorporate
this model in a Bayesian framework. Static pixels belong to stationary objects
such as walls or room furniture whereas dynamic pixels refer to non stationary



objects such as swaying trees or sea waves. Color and gradient statistics are
used to describe static pixels while color co-occurrence statistics describe dy-
namic pixels. As the correspondence between a pixel category and the features
used to describe it is fixed, the selection strategy reduces to an identification
process of static and dynamic pixels. A temporal difference between two con-
secutive video frames is used for this purpose. Unfortunately, this method lacks
of generality as the cardinality of the feature set, i.e. the number of candidate
features or group of features, is limited to two (one group of features for static
pixels and one other for dynamic pixels).

Parag et al. [19] introduced a more general feature selection framework re-
quiring a set of training images free of foreground objects. The set of training
images is divided into two parts. The first one generates a background statisti-
cal model for each feature of the feature set. These statistical models are used
for the computation of background probability estimates (for each candidate
feature) with the Kernel Density Estimation (KDE) [8] on the remaining part
of the training set and on synthetic foreground examples. The computed esti-
mates feed the training of a RealBoost classifier [20]. The resulting classifier
selects the most useful features for each pixel and assigns a confidence weight to
each of them. While this framework can be used with an arbitrary number of
candidate features, it has a serious drawback. Indeed, the synthetic foreground
examples used for boosting are generated randomly from a uniform distribution.
In other words, all candidate features are assumed to be uniformly distributed
for foreground objects. This assumption is not valid because of the wide vari-
ety of foreground statistical distributions among different features. For instance,
gradient has a foreground probability density function (FG-pdf) concentrated
around low values while RGB color components have a wider FG-pdf. This may
explain why the classification performance of Parag’s framework [19] decreases
when gradient features are added to the feature set. In our work, we overcome
this major limitation by means of global statistical foreground models.

Another boosting-based approach for feature selection was proposed by Grab-
ner et al. [21,22]. The main novelty of their work is the spatio-temporal nature
of the selection through on-line boosting. However, since the method is based
on self-learning (i.e. classifier predictions feed model updates), the background
model can end up in catastrophic state, as mentioned in [23]. Once again, unre-
alistic assumptions about the statistical distributions of foreground features are
used (a uniform distribution is assumed for the gray value of foreground objects
and serves as a basis for computing other feature distributions).

Recently, Javed et al. [24] included a dynamic feature selection strategy
for background subtraction in an Online Robust Principal Component Analy-
sis (OR-PCA) framework. Feature statistics, in terms of means and variances,
are used as a selection criterion. Unlike aforementioned purely spatial or spatio-
temporal selection approaches, their method is exclusively temporal-based, which
means that all pixels use the same features for the foreground segmentation. The
non-uniformity of the spatial distribution of background properties is thus ig-
nored.



3 Proposed selection strategy

A schematic view of our feature selection strategy is given in Fig. 1. Like in
Parag’s work [19], our selection process occurs during a training phase, which
allows to avoid extra computations during normal background subtraction op-
erations. This training phase is divided into three parts, represented by boxes
[1], [2], and [3] in Fig. 1. The first part consists to accumulate images free of
foreground objects, typically a few hundreds at a framerate of 30 frames per sec-
ond, which are further processed to build local background statistical models.
The second training part requires another sequence of images, this time includ-
ing foreground objects. These images are not saved into memory, but processed
by a background subtraction algorithm in order to build a global foreground
statistical model for each candidate feature of the feature set. The third part of
the training phase selects the best feature/threshold combination; this process
is local, meaning that it is performed for each pixel individually. The goal of the
selection process consists to detect which feature is most appropriate to discrim-
inate between the local background and the foreground at the frame level. To
guarantee some consistency with the segmentation process, the selection step
is fed by supplementary information relating to the background model of the
segmentation algorithm, and to the application performance metric (see box [4]
in Fig. 1). All these steps are detailed in the following subsections.
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Fig. 1. Schematic representation of the proposed feature selection framework.



3.1 Estimation of the foreground: local vs global foreground models

Background subtraction is a classification problem between the background or
foreground classes. It is well known that the classification performance of a classi-
fier is dependent on the discriminating power of the used features. Therefore, an
optimal classifier should select the best feature locally, that is for each pixel sep-
arately, to maximize its capability to distinguish between the local background
values and the local foreground values, which indirectly implies that we are able
to estimate the corresponding statistical distributions for any feature.

Obtaining reliable local background statistical models is realistic and com-
mon. Indeed, local background feature values are relatively stable (or at least
predictable). Moreover, the pixel-wise probability to observe a background sam-
ple (we name this as the local BG-prior) is much higher than the local FG-prior.
Subsequently, it suffices to collect a small set of background training images
to estimate the local BG feature distributions. However, estimating local fore-
ground distributions is more complex. The two main difficulties are that (1)
most features have a wide FG-pdf, and (2) local FG-priors are often low with
respect to BG-priors, which means that foreground might not be encountered
locally during the training phase. In fact, estimating the local foreground dis-
tributions reliably would require an extremely long observation period, which is
clearly intractable. There is thus an imbalance between the estimation of local
background or foreground characteristics.

To overcome this estimation problem, we assume that the local foreground
distribution of a feature can be approximated by its global foreground distri-
bution. There is an important advantage to assume this. Indeed, it might be
that a moving object is very different from the background for some areas of the
image, but close for other areas. A global estimation will help to learn from the
foreground values detected in the easiest areas of the scene. Mathematically, as-
suming that the distributions are represented by histograms of observed values,
and denoting by LHf the matrix of local histograms for a feature f, the global
histogram GHf of feature f is given by:

GHf(b) =
∑
(x,y)

LHf(x, y, b) , (1)

where b is a particular bin and (x, y) refers to the coordinates in the image.
For a multi-dimensional feature (for instance the RGB feature which is a tri-
dimensional feature, to the contrary of the individual color components: R,G, or
B), equation (1) becomes:

GHf(b1, b2, ..., bD) =
∑
(x,y)

LHf(x, y, b1, b2, ..., bD) , (2)

where D is the number of dimensions of the feature. Note that our assumption of
a uniform spatial distribution of foreground feature values is not perfectly true,
especially because of the modification of geometrical and colorimetric properties
of foreground objects in the image as they move across the scene. Despite that,



we believe that the approach is appropriate. The main benefit results from the
considerable reduction of the observation time required for estimating the local
foreground distributions. A practical estimation becomes thus feasible.

In summary, the second training stage (named “Global FG models estima-
tion” in Fig. 1) is performed as follows. We feed a background subtraction al-
gorithm (named “estimator” in the remainder of the paper) with a sequence of
training images including foreground objects. The choice of the estimator is not
critical; state-of-the-art techniques, such as SuBSENSE [25] or PAWCS [26], are
good candidates to segment foreground objects. Note that a fast estimator is not
necessary because there is no real-time requirement during the training phase.
The segmentation masks of the estimator are processed to build the #f global
foreground models, #f denoting the cardinality of the feature set.

3.2 Coherence between selection, segmentation, and application

While some authors have expressed the need for modeling distinct part of the
image with different features for background subtraction [18,19,21], none of them
noticed that the best feature map may depend on elements unrelated to back-
ground or foreground statistical properties. We innovate in this paper by con-
sidering the type of background model used by the segmentation algorithm (see
box [5] in Fig. 1). Some features may be adapted to specific background models,
while performing badly for others. This statement was confirmed recently by
López-Rubio et al. [27]. They showed that, while Haar-like features [28] were
reported to be adapted to KDE background models in the context of feature
combination [29], they have an insufficient discriminating power in a probabilis-
tic mixture-based approach. A generic algorithm should therefore select, locally,
the most discriminating feature for each background model individually.

Another important element of our framework is the inclusion of coherence
with respect to the application. Some applications require to minimize the false
alarm rate while maintaining a desired recall, whereas others need to maximize
the recall while maintaining a relatively low false alarm rate. As each feature
choice tends to favor particular metrics, the performance metric of the appli-
cation should be considered during the selection process. Therefore, we use the
application performance metric to evaluate the capability of a feature to discrim-
inate between local background samples and global foreground samples. Note
however that the framework is incompatible with prior-dependent performance
metrics, such as the popular F1 measure. The origin of this limitation is the
modification of the local FG-prior due to the construction of the global fore-
ground histograms. Indeed, the number of global foreground samples collected
during the second step of the learning phase (see box [2] in Fig. 1) is much
higher than the number of local background samples of a pixel (in fact equal to
the number of background training images). Therefore, as the selection process
introduces a large bias in the estimation of the local FG-prior, it is strongly rec-
ommended to use prior-independent metrics, such as the geometrical mean [30]
or the Euclidean distance in ROC space introduced in [31].



3.3 Local feature/threshold selection process

Our generic feature selection method for background subtraction is presented
in Algorithm 1. This algorithm is implemented in the [3] box of Fig. 1. Note
that the background subtraction step involves the choice of matching thresholds
(one threshold per feature) for comparing current input feature values with local
background feature values. For instance, in the case of ViBe [9], the radius of
the color sphere is the matching threshold used to compare RGB feature values.
These thresholds affect the results of the corresponding features. For this reason,
we feed the generic selection algorithm with #f sets of #t candidate thresholds
(one set of candidate thresholds per feature), where #t denotes the cardinality
of the threshold sets (assumed equal for each threshold set, for convenience) and
let the algorithm select the best feature/threshold combination, locally.

The selection process consists in a simulation of the target background model
for each feature. Firstly, the simulated local feature background models are build.
In the case of ViBe’s background model [9], this is performed by selecting, ran-
domly and for each feature, 20 values among the K background feature values
available at coordinates (x, y), K denoting the number of background training
images. Then, each model is assessed for its capability to predict the correct class
of input samples, these one being both (1) all local samples of the background
training images, and (2) all global samples collected in the corresponding global
FG histogram. As the predictions depend on the matching threshold, this capa-
bility is assessed for all candidate thresholds of a given feature, and described by
a confusion matrix [32]. The performance metric is computed from the confusion
matrix and the best feature/threshold combination is selected.

4 Experiments

4.1 Description of the methodology

We particularized our generic method for the ViBe background subtraction al-
gorithm [9], and evaluated it for the CDnet 2012 dataset [33]. The feature set
contains 9 individual color components (#f = 9), taken from the 3 common color
spaces RGB, HSV, and YCbCr:

CF = {R,G,B,H, S, V, Y, Cb, Cr}, #f = 9 . (3)

Each feature is quantized into 256 bins. For this purpose, the saturation S and
the value V (resp. the hue H) are rescaled linearly from the range [0, 1] (resp.
[0, 360)) to the range [0, 255]. The pre-defined set of possible thresholds is

CT f = {2, ..., 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50} ∀f, #t = 20 . (4)

The Euclidean distance in the ROC space, introduced in [31] and defined as

deuc =
√
FNR2 + FPR2, (5)



Algorithm 1 Generic algorithm for local feature/threshold selection.
Inputs
(1) A set of #f candidate features CF = {F1,F2,...,F#f}

(2) #f sets of #t candidate thresholds CT f = {T f
1 ,T

f
2 ,...,T

f
#t

}
(3) A performance metric P
(4) A target background model BM
(5) A table of K background training images BTI where BTI(x,y,k) is the background

RGB value at pixel coordinates (x,y) and training image k
(6) A table FGGH where FGGH(f,b) is the global FG histogram value

for bin b of feature Ff (see Section 3.1 for more details)
Outputs
(1) A feature map Fmap with Fmap(x, y) ∈ CF, ∀(x,y)
(2) A threshold map Tmap with Tmap(x, y) ∈ CTFmap(x,y), ∀(x,y)
Internal data
(1) #f tables Classf where Classf (b) is a class assigned to bin b of feature Ff

(2) A confusion matrix CM
(3) A table PT where PT(f,t) is a performance assigned to the combination Ff/T f

t

(4) #f feature background models FBMf

Pseudo-code of the selection algorithm
for each (x,y) do

for each Ff ∈ CF do
Build the feature background model FBMf using BM and BTI(x,y,:) ;
for each T f

t ∈ CT f do
for each bin b of feature Ff do

Predict Classf (b) given FBMf and T f
t ;

end
Compute CM given Classf (:), BTI(x,y,:), and FGGH(f,:) ;
Compute PT(f,t) given CM and P ;

end
end
Find (f∗,t∗) optimizing PT(f,t) ;
If several f optimize PT(f,t), then select f∗ randomly among the optimum f ;
If several t optimize PT(f∗,t), then select t corresponding to the lowest T f∗

t as t∗ ;
Fmap(x,y) = Ff∗ ; Tmap(x,y) = T f∗

t∗ ;
end

where FNR and FPR denote respectively the false negative rate and the false
positive rate, is our prior-independent performance metric. Its behavior is close to
that of the geometrical mean of Barandela et al. [30], but it is easier to interpret
because it measures the distance between a classifier and the theoretically best
classifier, also called oracle (top left corner of the ROC space). We want to
minimize this distance, because lower distances mean being closer to the oracle.

For the purposes of our analysis, we have selected three categories of videos
of CDnet [33]: “Baseline”, “Camera jitter ”, and “Dynamic background ”. Other
categories are less relevant, because either they are inappropriate (“Thermal ”
only contains grayscale images), or because our algorithm is not designed to



deal with the particularities of that category (“Shadow ” for example). In fact,
it is designed to be robust against camouflage and against background changes
that occur during the first part of the training phase (see box [1] in Fig. 1), such
as camera jitter, dynamic backgrounds, or illumination changes. Intermittent
object motion and shadows are related to foreground objects, and thus cannot
be learned during the background learning step.

CDnet [33] provides videos split for the needs of two phases: (1) an initializa-
tion phase (ground-truth images are not provided) and (2) an evaluation phase
(ground-truth images are provided). Images of the initialization phase are used
to train the background model. For videos containing moving objects during
this phase, we have manually selected background images, when it was possible.
Otherwise, we have manually defined bounding boxes around moving objects
and their shadows, to help discarding these areas for building the background
models. The first half of images of the evaluation phase is used to estimate the
global foreground models, using PAWCS [26] as an estimator. After this step, we
perform the local feature/threshold selection. The computed feature and thresh-
old maps are provided to ViBe (designated by ViBe-FT), which then detects the
foreground for the second half of images of the evaluation phase. We evaluate
the segmentation masks of ViBe-FT on this second half.

4.2 Results and discussion

The results of ViBe-FT are compared to those of the original ViBe [9] algorithm
when applied on the 9 color components separately, i.e. with uniform feature
and threshold maps, denoted by {ViBe-R, ViBe-G, . . ., ViBe-Cb, ViBe-Cr}. The
uniform thresholds have been set to {11,11,11,11,11,11,11,3,3} (these values were
found to be well suited to the corresponding features). Moreover, we report the
results of ViBe when only the feature selection process of Algorithm 1 is activated
(thresholds are fixed to the aforementioned values), designated by ViBe-F.

Results displayed in Fig. 2 show that the proposed local feature selection
framework significantly improves the detection results. For each category, our
feature and threshold maps reduce the mean Euclidean distance of ViBe. This
means that our framework pushes the background subtraction algorithm towards
the oracle of the ROC space, and thus improves the detection. The conclusion
is similar when the threshold selection mechanism is deactivated (denoted by
“ViBe-F” on the graphic), which proves the robustness of the local feature selec-
tion process with respect to the threshold values.

Fig. 3 shows several feature maps obtained after the local feature selection
process, as well as the resulting improved segmentation masks. Note that these
improvements are significant despite that (1) a small set of candidate features
was used, and (2) the number of training frames used to estimate the global
foreground distributions is relatively small (744 on average), which confirms the
importance of a global estimation for obtaining reliable foreground distributions.
The computational complexity of the selection process is O(#f#t). Note however
that, as this process occurs during an off-line training phase, it does not affect
the computational complexity of the detection task.
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Fig. 2. Mean Euclidean distances in the ROC space for relevant CDnet [33] categories.

Fig. 3. Improvements obtained with our selection framework for three videos of CD-
net [33]. Columns from left to right show: the input images, the computed feature maps
(see legend of Fig. 2 for the color-feature matching), the results of ViBe-G (lowest mean
deuc among the uniform feature maps), the results of ViBe-FT, and the ground-truths.
Note that both ViBe-G and ViBe-FT are post-processed by a 9x9 median filter.

5 Conclusions

In this paper, we present a generic feature selection method for background sub-
traction. Unlike previous approaches, we estimate the foreground feature sta-
tistical distributions at the frame level. Features are selected locally depending
on their capability to discriminate between local background samples and global
foreground samples for a specific background model and for a chosen perfor-
mance metric. Experiments led for the ViBe algorithm show that our method
significantly improves the performance in the ROC space.
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