Article (Périodiques scientifiques)
Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery
Michez, Adrien; Piégay, Hervé; Lisein, Jonathan et al.
2016In International Journal of Applied Earth Observation and Geoinformation, 44
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S0303243415300040-main.pdf
Postprint Éditeur (1.28 MB)
Demander un accès

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mapping of invasive species; Unmanned aerial system; UAS; Supervised classification; Random forests
Résumé :
[en] Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation has increased during the 20th century. Concomitant with (or as consequences of) these disturbances, the invasion of exotic species has increased throughout the world’s riparian zones. In our study, we propose a easily reproducible methodological framework to map three riparian invasive taxa using Unmanned Aerial Systems (UAS) imagery: Impatiens glandulifera Royle, Heracleum mantegazzianum Sommier and Levier, and Japanese knotweed (Fallopia sachalinensis (F. Schmidt Petrop.), Fallopia japonica (Houtt.) and hybrids). Based on visible and near-infrared UAS orthophoto, we derived simple spectral and texture image metrics computed at various scales of image segmentation (10,30, 45, 60 using eCognition software). Supervised classification based on the random forests algorithm was used to identify the most relevant variable (or combination of variables) derived from UAS imagery for mapping riparian invasive plant species. The models were built using 20% of the dataset, the rest of the dataset being used as a test set (80%). Except for H. mantegazzianum, the best results in terms of global accuracy were achieved with the finest scale of analysis (segmentation scale parameter = 10). The best values of overall accuracies reached 72%, 68%, and 97% for I. glandulifera, Japanese knotweed, and H. mantegazzianum respectively. In terms of selected metrics, simple spectral metrics (layer mean / camera brightness) were the most used. Our results also confirm the added value of texture metrics (GLCM derivatives) for mapping riparian invasive species. The results obtained for I. glandulifera and Japanese knotweed do not reach sufficient accuracies for operational applications. However, the results achieved for H. mantegazzianum are encouraging. The high accuracies values combined to relatively light model-inputs needed (delineation of a few umbels) make our approach a serious contender as a cost-effective tool to improve the field management of H. mantegazzianum.
Disciplines :
Sciences de l’environnement & écologie
Auteur, co-auteur :
Michez, Adrien  ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Piégay, Hervé
Lisein, Jonathan ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Claessens, Hugues  ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Lejeune, Philippe  ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Langue du document :
Anglais
Titre :
Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery
Titre traduit :
[fr] Cartographie de plantes invasives des bandes riveraines à l'aide d'imagerie drone (UAV)
Date de publication/diffusion :
février 2016
Titre du périodique :
International Journal of Applied Earth Observation and Geoinformation
ISSN :
1569-8432
eISSN :
1872-826X
Maison d'édition :
Elsevier Science, Amsterdam, Pays-Bas
Volume/Tome :
44
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement
Disponible sur ORBi :
depuis le 14 août 2015

Statistiques


Nombre de vues
341 (dont 63 ULiège)
Nombre de téléchargements
24 (dont 17 ULiège)

citations Scopus®
 
131
citations Scopus®
sans auto-citations
126
OpenCitations
 
85
citations OpenAlex
 
136

Bibliographie


Publications similaires



Contacter ORBi