Afendras, G., Papadatos, N., and Papathanasiou, V.: An extended Stein-type covariance identity for the Pearson family with applications to lower variance bounds. Bernoulli, 17 (2011), 507-529. MR-2787602
Barbour, A. D.: Stein's method for diffusion approximations. Probability theory and related fields, 84 (1990), 297-322. MR-1035659
Barbour, A. D., and Chen, L. H. Y.: An introduction to Stein's method, vol. 4. World Scientific, 2005. MR-2205339
Barbour, A. D., and Chen, L. H. Y.: Stein's method and applications, vol. 5. World Scientific, 2005. MR-2205339
Barbour, A. D., Johnson, O., Kontoyiannis, I., and Madiman, M.: Compound Poisson approximation via information functionals. Electron. J. Probab. 15 (2010), 1344-1368. MR-2721049
Barron, A. R.: Entropy and the central limit theorem. Ann. Probab., 14 (1986), 336-342. MR-815975
Brown, L. D.: A proof of the central limit theorem motivated by the Cramér-Rao inequality. In Statistics and probability: essays in honor of C. R. Rao. North-Holland, Amsterdam, 1982, 141-148. MR-659464
Cacoullos, T., and Papathanasiou, V.: Characterizations of distributions by variance bounds. Statist. Probab. Lett., 7 (1989), 351-356. MR-1001133
Cacoullos, T., Papathanasiou, V., and Utev, S. A.: Variational inequalities with examples and an application to the central limit theorem. Ann. Probab., 22 (1994), 1607-1618. MR-1303658
Chatterjee, S., Fulman, J., and Roellin, A.: Exponential approximation by Stein's method and spectral graph theory. ALEA, 8 (2011), 197-223.
Chatterjee, S., and Shao, Q.-M.: Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab., 21 (2011), 464-483. MR-2807964
Chen, L. H. Y., Goldstein, L., and Shao, Q.-M.: Normal approximation by Stein's method. Probability and its Applications (New York). Springer, Heidelberg, 2011. MR-2732624
Chen, L. H. Y., and Shao, Q.-M.: Stein's method for normal approximation. In An introduction to Stein's method, vol. 4 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. Singapore Univ. Press, Singapore, 2005, 1-59. MR-2235448
Cover, T., and Thomas, J.: Elements of Information Theory, vol. Second Edition. Wiley & Sons, New York, 2006.
Döbler, C.: Stein's method of exchangeable pairs for absolutely continuous, univariate distributions with applications to the polya urn model. arXiv:1207.0533, July 2012.
Gibbs, A. L., and Su, F. E.: On choosing and bounding probability metrics. International Statistical Review / Revue Internationale de Statistique, 70 (2002), 419-435.
Goldstein, L., and Reinert, G.: Distributional transformations, orthogonal polynomials, and Stein characterizations. J. Theoret. Probab., 18 (2005), 237-260. MR-2132278
Goldstein, L., and Reinert, G.: Stein's method and the beta distribution. arXiv:1207.1460, July 2012.
Götze, F.: On the rate of convergence in the multivariate clt. Ann. Probab., 19 (1991), 724-739. MR-1106283
Johnson, O.: Information theory and the central limit theorem. Imperial College Press, London, 2004. MR-2109042
Johnson, O., and Barron, A. B.: Fisher information inequalities and the central limit theorem. Probab. Theory Related Fields, 129 391-409 (2004). MR-2128239
Kontoyiannis, I., Harremoës, P., and Johnson, O.: Entropy and the law of small numbers. IEEE Trans. Inform. Theory 51 (2005), 466-472. MR-2236061
Ley, C., and Swan, Y.: Stein's density approach for discrete distributions and information inequalities. arXiv:1211.3668v1, November 2012.
Linnik, J. V.: An information-theoretic proof of the central limit theorem with Lindeberg conditions. Theor. Probability Appl. 4 (1959), 288-299. MR-0124081
Luk, H. M.: Stein's method for the gamma distribution and related statistical applications. PhD thesis, University of Southern California, 1994.
Mayer-Wolf, E.: The Cramér-Rao functional and limiting laws. Ann. Probab., 18 (1990), 840-850. MR-1055436
Nourdin, I., and Peccati, G.: Stein's method meets Malliavin calculus: a short survey with new estimates. In Recent development in stochastic dynamics and stochastic analysis, vol. 8 of Interdiscip. Math. Sci. World Sci. Publ., Hackensack, NJ, 2010, 207-236. MR-2807823
Nourdin, I., and Peccati, G.: Normal approximations with Malliavin calculus: from Stein's method to universality. Cambridge Tracts in Mathematics. Cambridge University Press, 2011.
Picket, A.: Rates of convergence of X2 approximations via Stein's method. PhD thesis, Lincoln College, University of Oxford, 2004.
Röllin, A.: On the optimality of stein factors. Probability Approximations and Beyond (2012), 61-72.
Sason, I.: An information-theoretic perspective of the poisson approximation via the chenstein method. arXiv:1206.6811, June 2012.
Sason, I.: On the entropy of sums of bernoulli random variables via the chen-stein method. arXiv:1207.0436, July 2012.
Schoutens, W.: Orthogonal polynomials in Stein's method. J. Math. Anal. Appl., 253 (2001), 515-531. MR-1808151
Shimizu, R.: On fisher's amount of information for location family. In Statistical Distributions in Scientific Work (1975), G. P. et al., Ed., vol. 3, 305-312.
Shimizu, R.: Error bounds for asymptotic expansion of the scale mixtures of the normal distribution. Ann. Inst. Statist. Math. 39 (1987), 611-622.
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory (Berkeley, Calif., 1972), Univ. California Press, 583-602. MR-0402873
Stein, C.: Approximate computation of expectations. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA, 1986. MR-882007
Stein, C., Diaconis, P., Holmes, S., and Reinert, G.: Use of exchangeable pairs in the analysis of simulations. In Stein's method: expository lectures and applications (2004), P. Diaconis and S. Holmes, Eds., vol. 46 of IMS Lecture Notes Monogr. Ser, Beachwood, Ohio, USA: Institute of Mathematical Statistics, 1-26.
Stein, C. M.: Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9 (1981), 1135-1151. MR-630098