[en] Recently, macroalgal biomass is gaining wide attention as an alternative in the production of biofuels (as bioetanol and biogas) and compounds with high added value with specific properties (antioxidants, anticoagulants, anti-inflammatories) for applications in food, medical and energy industries in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore, in this chapter, a review on the application of hydrothermal pretreatment on macroalgal biomass is presented.
Disciplines :
Chemistry
Author, co-author :
Ruiz, Héctor A.; School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico > Food Research Department > Biorefinery Group
Rodríguez Jasso, Rosa M.; School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico > Food Research Department
Aguedo, Mario ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Kádár, Zsófia; Technical University of Denmark, 2800 Kongens Lyngby, Denmark > Department of Chemical and Biochemical Engineering > Center for BioProcess Engineering
Language :
English
Title :
Hydrothermal Pretreatments of Macroalgal Biomass for Biorefineries
Publication date :
October 2015
Main work title :
Algal Biorefineries, Volume 2: Products and Refinery Design
Aguilar MJ, Batista AP, Nunes MC, Cordobes F, Raymundo A, Guerrero A(2011). From egg yolk/ƒÈ-Carrageenan dispersions to gel systems: linear viscoelasticity and texture analysis. Food Hydrocolloid25:654-658.
Akhtar J, Amin NAS(2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energ Rev15:1615-1624.
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ(2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol101:4851-4861.
Anastasakis K, Ross AB(2015). Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: an energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel139:546-553.
Anastyuk SD, Imbs IT, Dmitrnok PS, Zvyagintseva TN (2014). Rapid mass spectrometric analysis of a novel fucoidan, extracted from the brown alga Coccophora langsdorfii. Sci World J. doi:10-1155.2014/972450.
Astorga-Espana MS, Mansilla A(2013). Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol26:973-978.
Azapagic A(2014). Sustainability considerations for integrated biorefineries. Trends Biotechnol32:1-4.
Baghel RS, Trivedi N, Gupta V, Neori A, Reddy CRK, Lali A, Jha B (2015). Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem. doi:10-1039.C4GC02532F (In press)
Balboa EM, Rivas S, Moure A, Dominguez H, Parajo JC(2013). Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar Drugs11:4612-4627.
Balboa EM, Soto ML, Nogueira DR, Gonzalez-Lopez N, Conde E, Moure A, Vinardell MP, Mitjans M, Dominguez H(2014). Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind Crops Prod58:104-110.
Barabanova AO, Tishchenko IP, Glazunov VP, Soloveva TF, Ermak IM(2010). Characteristics of polysaccharides and protein associated with them from dried and freshly collected red alga Tichocarpus crinitus. Chem Nat Compd46:509-513.
Barbot YN, Falk HM, Benz R (2014). Thermo-acidic pretreatment of marine brown algae Fucus vesiculosus to increase methane production a disposal principle for macroalgae waste from beaches. J Appl Phycol. doi:10-1007.10811-014-0339-x (In press)
Bedoux G, Hardouin K, Burlot AS, Nathalie Buorgougnon(2014). Bioactive components from seaweeds: cosmetics applications and future development. In: Nathalie Bourgougnon (ed)Advances in Botanical Research focuses on sea plants, including algae, seaweed, and diatoms, Academic Press, ISBN:9-80124080621.
Borines MG, De Leon RL, Mc HenryMP(2011). Bioethanol production from farming non-food macroalgae in Pacific island nations: chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew Sustain Energ Rev15:4432-4435.
Bozell JJ(2008). Feedstocks for the future – biorefinery production of chemicals from renewable carbon. Clean36:641-647.
Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markagr S, Olesen B, Arias C, Jensen PD(2011). Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol102:2595-2604.
Castro LSEPW, Pinheiro TS, Castro AJG, Dore CMPG, Silva NB, Alves MGCF, Santos MSN, Leite EL(2014). Fucose-containing sulfated polysaccharides from brown macroalgae Lobophora variegata with antioxidant, anti-inflammatory, and antitumoral effects. J Appl Phycol26:1783-1790.
Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R(2009). Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng2:1-30.
Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N(2014). Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol26:979-986.
Cho Y, Kim H, Kim SK(2013). Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng36:713-719.
Choi W, Kang D, Lee H(2013). Enhancement of the saccharification yields of Ulva pertusa Kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol Bioprocess Eng18:728-735.
Ciancia M, Sato Y, Nonami H, Cerezo AS, Erra-Balsells R, Matulewicz MC(2005). Autohydrolysis of a partially cyclized mu/nu-carrageenan and structural elucidation of the oligosaccharides by chemical analysis, NMR spectroscopy and UV-MALDI mass spectrometry. Arkivoc12:319-331.
Clarens AF, Resurreccion EP, White MA, Colosi LM(2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol44:1813-1819.
Cofrades S, López-LópezI, Solas MT, Bravo L, Jiménez-Colmenero F(2008). Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci79:767-776.
Dawczynski C, Schubert R, Jahreis G(2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem103:891-899.
De QuirósAR, Lage-Yusty MA, López-HernándezJ(2010). Determination of phenolic compounds in macroalgae for human consumption. Food Chem121:634-638.
Delattre C, Fenoradosoa TA, Michaud P(2011). Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol54:1075-1092.
Denis C, MorançaisM, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J(2010). Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem119:913-917.
Díaz-VázquezLM, Rojas-PérezA, Fuentes-Caraballo M, Robles-Ramos IV, Jena U, Das K(2015). Demineralization of Sargassum spp. macroalgae biomass: selective thermochemical liquefaction process for bio-oil production. Frontiers Energy Res. doi:10-3389.fenrg.2015.0000.
Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S(2014). Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresour Technol170:20-29.
Elliot DC, Biller P, Roos AB, Schmidt AJ, Jones SB(2015). Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol178:147-156.
Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE(2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res2:445-454.
Fang Z(2013). Pretreatment techniques for biofuels and biorefineries. Springer, Berlin. ISBN 978-3-642-32735-3
FAO (2012). Global Aquaculture Production 1950–2012. Available from: http://www.fao.org/figis/servlet/Tab Selector. Accessed 1 Nov 2013.
Fasahati P, Woo HC, Liu JJ(2015). Industrial-scale bioethanol production from brown algae: effects of pretreatment processes on plant economics. Appl Energy139:175-187.
Fitton JH(2011). Therapies from fucoidan; multifunctional marine polymers. Mar Drugs9:1731-1760.
Ge L, Wang P, Mou H(2011). Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energ36:84-89.
Golberg A, Vitkin E, Linshiz G, Khan SA, Hillson NJ, Yakhini Z, Yarmush ML(2014). Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Bioref8:67-82.
Gómez-OrdóñezE, Jiménez-Escrig A, RupérezP(2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int43:2289-2294.
González-LópezN, Moure A, DomínguezH(2012). Hydrothermal fractionation of Sargassum muticum biomass. J Appl Phycol24:1569-1578.
Gressler V, Fujii MT, Martins AP, Colepicolo P, Mancini-Filho J, Pinto E(2011). Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric91:1687-1692.
Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D(2014). Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol26(22):719-727.
Haykiri-Acma H, Yaman S, Kucukbayrak S(2013). Production of biobriquettes from carbonized brown seaweed. Fuel Process Technol106:33-40.
Hoang MH, Kim JY, Lee JH, You S, Lee SJ(2015). Antioxidative, hypolipidemic, and antiinflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Sci Biotechnol24:199-205.
Hoffmann RA, Russell AR, Gidley MJ(1996). Molecular weight distribution of carrageenans. In: Philips GO, Williams PJ, Wedlock DJ (eds) Gums and stabilisers for the food industry. IRL Press at the Oxford University Press, Oxford, pp 137-148.
Hong IK, Jeon H, Lee SB(2014). Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem20:2687-2691.
Hughes SR, Gibbons WR, Moser BR, Rich JO(2013). Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products. In: Zhen Fang (ed) Biofuels – economy, environment and sustainability. In Tech, Rijeka ISBN:978-953-51-0950-1
Jang SS, Shirai Y, Uchida M, Wakisaka M(2012a)Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol11:1953-1963.
Jang JS, Cho Y, Jeong GT, Kim SK(2012b)Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng35:11-18.
Jard G, Dumas C, Delgenes JP, Marfaing H, Sialve B, Steyer JP, Carrere H(2013). Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmate. Biochem Eng J79:253-258.
Ji-Hyeon Y, Lee S, Choi WY, Kang DH, Lee HY, Jung KH(2011). Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol21:323-331.
Jung KW, Kim DH, Shin HS(2011). Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol102:2745-2750.
Jung KA, Lim SR, Kim Y, Park JM(2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol135:182-19.
Kalimuthu S, Kim S(2015). Fucoidan, a sulfated polysaccharides from brown algae as therapeutic target for cancer (Chapter 7). In: Se-Kwon Kim (ed) Handbook of anticancer drugs from marine origin, Springer International Publishing, Switzerland, pp 145-164.
Kraan S(2013). Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change18:27-4.
Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC(2013). Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol135:150-15.
Li D, Chen L, Chen S, Zhang X, Chen F, Ye N(2012). Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel96:185-19.
Malihan LB, Nisola GM, Mittal N, Seo JG, Chung WJ(2014). Blended ionic liquid systems for macroalgae pretreatment. Renew Energ66:596-60.
Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC(2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol97:2402-240.
Marquez GPB, Santianez JE, Trono GC, Montano MNE, Araki H, Takeuchi H, Hasegawa T(2014). Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sustain Energ Rev38:1056-106.
Marsham S, Scott GW, Tobin ML(2007). Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem100:1331-133.
Matanjun P, Mohamed S, Mustapha NM, Muhammad K(2009). Nutrient content of tropical edible seaweeds Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol21:75-8.
Meillisa A, Woo H, Chun B(2015). Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem171:70-7.
Mohamed S, Hashim SN, Rahman HA(2012). Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol23:83-9.
Moncada J, Tamayo JA, Cardona CA(2014). Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci118:126-14.
Montingelli ME, Tedesco S, Olabi AG(2015). Biogas production from algal biomass. Renew Sustain Energ Rev43:961-97.
National Renewable Energy Laboratory (NREL) Available at: http://www.nrel.gov/biomass/biorefinery.html. Accessed 1 Sep 2013.
Navarro DA, Stortz CA(2005). Microwave-assisted alkaline modification of red seaweed galactans. Carbohydr Polym62:187-19.
Neveux N, Magnusson M, Maschmeyer T, Nys R, Paul NA(2014a)Comparing the potential production and value of high]energy liquid fuels and protein from marine and freshwater macroalgae. GCB Bioenerg7:673-68.
Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, Nys R(2014b)Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Res6:22-3.
Nielsen HB, Heiske S(2011). Anaerobic digestion of macroalgae: methane potentials, pretreatment, inhibition and co-digestion. Water Sci Technol64:1723-172.
Okuda K, Oka K, Onda A, Kaijiyoshi K, Hiraoka M, Yanagisawa K(2008). Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol83:863-84.
Oliveira JV, Alves MM, Costa JC(2014). Design of experiments to assess pre-treatment and codigestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour Technol162:323-33.
Oliveira JV, Alves MM, Costa JC(2015). Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol175:480-48.
Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A(2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chem99:98-104.
Overend RP, Chornet E(1987). Fractionation of lignocellulosic by steam-aqueous pretreatments. Philos Trans R Soc Lond321:523-536.
Peña-RodríguezA, Mawhinney TP, Ricque-Marie D, Cruz-SuárezLE(2011). Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem129:491-498.
Peng Y, Xie E, Zheng K, Fredimoses M, Yang X, Zhou X, Wang Y, Yang B, Lin X, Liu J, Liu Y(2013). Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar Drugs11:20-32.
Pham TH, Um Y, Yoon HH(2013). Pretreatment of macroalgae for volatile fatty acid production. Bioresour Technol146:754-757.
Podkorytova AV, Vafina LH, Kovaleva EA, Mikhailov VI(2007). Production of algal gels from the brown alga, Laminaria japonica Aresch, and their biotechnological applications. J Appl Phycol19:827-830.
Poots T, Du J, Paul M, May P, Beitle R, Hestekin J(2012). The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energ31:29-36.
Prajapati VD, Maheriya PM, Jani GH, Solanki HK(2014). Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym105:97-112.
Radulovich R, Umanzor S, Cabrera R, Mata R(2015). Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture436:40-46.
Rajauria G, Jaiswal AK, Abu-Ghannam A, Gupta S(2010). Effect of hydrothermal processing on colour, antioxidant and free radical scavenging capacities of edible Irish brown seaweeds. Int J Food Sci Technol45:2485-2493.
Rameshkumar S, Ramakritinan CM, Yokeshbabu M(2013). Proximate composition of some selected seaweeds from Palk bay and Gulf of Mannar, Tamilnadu, India. Asian J Biomed Pharm Sci3:1-5.
Rioux LE, Turgeon SL, Beaulieu M(2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym69:530-537.
Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA(2011). Microwaveassisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym86:1137-1144.
Rodriguez-Jasso RM, Mussatto SI, SepúlvedaL, Agrasar AT, Pastrana L, Aguilar CN, Teixeira JA(2013). Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food Bioprod Process91:587-594.
Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA(2014). Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem Pap 68: 203-209, 23.
Roesijadi G, Jones SB, Snowden-Swan, Zhu Y(2010). Macroalgae as a biomass feedstock: A preliminary analysis. Pacific Northwest Laboratory and United States Department of Energy. Available from: http://www.pnl.gov/main/publications/external/technical_reports/pnnl-19944.pdf. Accessed 2 Nov 2010.
Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA(2013a)Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym92:2154-2162.
Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA(2013b)Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energ Rev21:35-51.
Ruiz HA, Parajó JC, Teixeira JA (2015). Biorefinery strategies formacroalgae-based in bioethanol production. In: Energy science and technology. Studium Press LLC, Houston (in press)
Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB(2013). Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol – comparison of five pretreatment technologies. Bioresour Technol140:36-42.
Schumacher M, Yanik J, Sinag A, Kruse A(2011). Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids58:131-135.
Seaweed Site: information on marine algae. Available from: http://www.seaweed.ie. Accessed 2 Nov 2010.
Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK(2013). Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol60:366-374.
Shevchenko NM, Anastyuk SD, Menshova RV, Vishchuk OS, Isakov VI, Zadorozhny PA, Sikorskaya TV, Zvyagintseva TN (2014). Further studies on structure of fucoidan from brown alga Saccharina gurjanovae. Carbohydr Polym. doi:10-1016.j.carbpol.2014.12.042 (In press)
Shi J, Pu Y, Yang B, Ragauskas A, Wyman CE(2011). Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour Technol102:5952-5961.
Siddhanta AK, Prasad K, Meena R, Prasad G, Metha GK, Chhatbar MU, Oza MD, Kumar S, Sanandiya ND(2009). Profiling of cellulose content in Indian seaweed species. Bioresour Technol100:6669-6673.
Singh R, Balagurumurthy B, Bhaskar T(2015a)Hydrothermal liquefaction of macro algae: effect of feedstock composition. Fuel146:60-74.
Singh R, Bhaskar T, Balagurumurthy B(2015b)Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata. Process Saf Environ Prot93:154-160.
Sun C, Chen Y, Zhang X, Pan J, Cheng H, Wu M(2014). Draft genome sequence of Microbulbifer elongatus strain HZ11 a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. Mar Geonomics18:83-85.
Suutari M, Leskinen E, Fagerstedt K, Juparinen J, Kuupo Blomster J(2015). Macroalgae in biofuel production. Phycol Res63:1-18.
Tedesco S, Benyounis KY, Olabi AG(2013). Mechanical pretreatment effects on macroalgaederived biogas production in co-digestion with sludge in Ireland. Energy61:27-33.
Tekin K, Karagoz S(2013). Non-catalytic and catalytic hydrothermal liquefaction of biomass. Res Chem Intermed39:485-498.
Tekin K, Karagoz S, BektaºS(2014). A review of hydrothermal biomass processing. Renew Sustain Energ Rev40:673-687.
Tian C, Li B, Liu Z, Zhang Y, Lu H(2014). Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sustain Energ Rev38:933-950.
Titlyanov EA, Titlyanova TV(2010). Seaweed cultivation: methods and problems. Russ J Mar Biol36:227-242.
Trivedi N, Gupta V, Reddy CRK, Jha B (hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile). Bioresour Technol150:106-112.
Usov AI, Zelinsky ND(2013). Chemical structures of algal polysaccharides. In: Domínguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing, Cambridge, pp 23-86.
Vanegas CH, Hernon A, Bartlett J(2015). Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. Int J Ambient Energ36:2-7.
Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM(2013). Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol128:431-437.
Wang HMD, Chen CC, Huynh P, Chang JS (2014). Exploring the potential of using algae in cosmetics. Bioresour Technol. doi:10-1016.j.biortech.2014.12.001 (In press)
Wei N, Quarterman J, Jin Y(2013). Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol31:70-77.
Xu X, Kim JY, Oh YR, Park JM(2014). Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresour Technol169:455-461.
Xu Y, Duan P, Wang F(2015). Hydrothermal processing of macroalgae for producing crude bio-oil. Fuel Process Technol130:268-274.
Yanagisawa M, Kawai S, Murata K(2013). Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered4:224-235.
Yazdani P, Zamani A, Karimi K, Taherzadeh MJ(2015). Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol176:196-202.
Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH(2011). Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol21:323-331.
Zafar M, Chowdhury SMRA(2009). Water quality and biochemical components of Hydroclathrus clathratus in the Tidal shore area of St. Martin’s Island, Bangladesh. Int J Phycol Phycochem5:7-10.
Zhang B, Shahbazi A, Wang L, Diallo O, Whitmore A(2011). Hot-water pretreatment of cattails for extraction of cellulose. J Ind Microbiol Biotechnol38:819-824.
Zheng Y, Zhao J, Xu F, Li Y(2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci42:35-53.
Zhou D, Zhang L, Zhang S, Fu H, Chen J(2010). Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energ Fuel24:4054-4061.