Abstract :
[en] The growing interest for Selective Laser Melting (SLM) in orthopedic implant manufacturing is accompanied by
the introduction of novel Ti alloys, in particular β-Ti for their excellent corrosion resistance as well as favorable
combination of high mechanical strength, fatigue resistance and relatively low elastic modulus. As part of the
SLM process for producing quality β-Ti parts powder flowability is essential to achieve uniform thickness of powder
layers. In this work the flowability of different gas atomized β-Ti, including NiTi, powders has been studied. Their
rheological properties were compared to those of commercially available plasma-atomized Ti–6Al–4V powder
using a newly developed semi-automatic experimental set-up. Not only the particle size, shape and size distribution
of the powders display a large influence on the powder flowability but also particle surface properties such as
roughness, chemical composition and the presence of liquid on the surface of the particles. It was found that plasma
or gas atomization production techniques for SLM powder have a considerable effect on the particle topography.
Among the powders studied regarding SLM applicability only rheological properties of the fine size fraction
(25–45 μm) of Ti–45Nb didn't conform to SLM processing requirements. To improve flowability of the Ti–45Nb
powder itwas annealed both in air and argon atmosphere at 600 °C during 1 h, resulting in an improved rheological
behavior suitable for SLM processing.
Scopus citations®
without self-citations
95