prior uncertainty; Popper-Bayes; training image; geological scenario; electrical resistivity tomography; probability perturbation method
Abstract :
[en] In inverse problems, investigating uncertainty in the posterior distribution of model parameters is as important as matching data. In recent years, most efforts have focused on techniques to sample the posterior distribution with reasonable computational costs. Within a Bayesian context, this posterior depends on the prior distribution. However, most of the studies ignore modeling the prior with realistic geological uncertainty. In this paper, we propose a workflow inspired by a Popper-Bayes philosophy, that data should first be used to falsify models, then only be considered for matching. We propose a workflow consisting of three steps: (1) in defining the prior, we interpret multiple alternative geological scenarios from literature (architecture of facies) and site specific data (proportions of facies). Prior spatial uncertainty is modeled using multiple-point geostatistics, where each scenario is defined using a training image. (2) We validate these prior geological scenarios by simulating electrical resistivity tomography (ERT) data on realizations of each scenario and comparing them to field ERT in a lower dimensional space. In this second step, the idea is to probabilistically falsify scenarios with ERT, meaning that scenarios which are incompatible receive an updated probability of zero while compatible scenarios receive a non-zero updated belief. (3) We constrain the hydrogeological model with hydraulic head and ERT using a stochastic search method. The workflow is applied to a synthetic and a field case studies in an alluvial aquifer. This study highlights the importance of considering and estimate prior uncertainty (without data) through a process of probabilistic falsification.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Hermans, Thomas ; Université de Liège > Département ArGEnCo > Géophysique appliquée
Nguyen, Frédéric ; Université de Liège > Département ArGEnCo > Géophysique appliquée
Caers, Jef; Stanford University > Stanford Center for Reservoir Forecasting
Language :
English
Title :
Uncertainty in training image-based inversion of hydraulic head data constrained to ERT data: workflow and case study
Publication date :
2015
Journal title :
Water Resources Research
ISSN :
0043-1397
eISSN :
1944-7973
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Volume :
51
Pages :
5332-5352
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRB - Fondation Roi Baudouin
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Battle-Aguilar, J., (2008), Groundwater flow and contaminant transport in an alluvial aquifer: In-situ investigations and modelling of a brownfield with strong groundwater-surface interactions, PhD thesis, Univ. of Liege, Liege, Belgium.
Bersezio, R., M. Giudici, and, M. Mele, (2007), Combining sedimentological and geophysical data for high resolution 3D mapping of fluvial architectural elements in the Quaternary Po plain (Italy), Sediment. Geol., 202, 230-248.
Beven, K., and, A. Binley, (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrogeol. Processes, 6, 279-298.
Beven, K., and, A. Binley, (2014), GLUE: 20 years on, Hydrol. Processes, 28, 5897-5918.
Borg, I., and, P. J. F. Groenen, (2005), Modern Multidimensional Scaling Theory and Applications, Springer, N. Y.
Brouyère, S., (2001), Etude et modélisation du transport et du piégeage des solutés en milieu souterrain variablement saturé [in French], PhD thesis, Univ. of Liege, Liege, Belgium.
Caers, J., (2003), Geostatistical history matching under training-image based geological model constraints, SPE J., 8 (3), 218-226.
Caers, J., (2007), Comparing the gradual deformation with the probability perturbation method for solving inverse problems, Math. Geol., 39 (1), 27-52.
Caers, J., (2011), Modeling Uncertainty in Earth Sciences, Wiley-Blackwell, Chichester, U. K.
Caers, J., and, T. Hoffman, (2006), The probability perturbation method: A new look at Bayesian inverse modeling, Math. Geol., 38 (1), 81-100.
Caers, J., and, T. Zhang, (2004), Multiple-point geostatistics: A quantitative vehicle for integrating geological analogs into multiple reservoir models, in Integration of Outcrop and Modern Analogs in Reservoir Modeling, AAPG Mem., vol. 80, edited by, M. Grammer, P. M. Harris, and, G. P. Eberli, pp. 383 -394, Am. Assoc. of Pet. Geol, Tulsa, Okla.
Caers, J., T. Hoffman, S. Strebelle, and, X. H. Wen, (2006), Probabilistic integration of geologic scenarios, seismic and production data-A West Africa turbidite reservoir case study, Leading Edge, 25, 240-244.
Castro, S. A., J. Caers, and, C. Otterlei, (2009), Incorporating 4D seismic data into reservoir models while honoring production and geologic data: A case study, Leading Edge, 28 (12), 1499-1506.
Caterina, D., T. Hermans, and, F. Nguyen, (2014), Case studies of incorporation of prior information in electrical resistivity tomography: Comparison of different approaches, Near Surf. Geophys., 12, 451-465, doi: 10.3997/1873-0604.2013070.
Colombera, L., F. Felletti, N. P. Mountney, and, W. D. McCaffrey, (2012), A database approach for constraining stochastic simulations of the sedimentary heterogeneity of fluvial reservoirs, AAPG Bull., 96 (11), 2143-2166.
Day-Lewis, F. D., K. Singha, and, A. M. Binley, (2005), Applying petrophysical models to radar travel time and electrical tomograms: Resolution-dependent limitations, Water Resour. Res., 110, B08206, doi: 10.1029/2004JB003569.
de Marsily, G., G. Lavedan, M. Boucher, and, G. Fasanino, (1984), Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model, in Proceedings of Geostatistics for Natural Resources Characterization, edited by, G. Verly, et al., pp. 831-849, D. Reidel, Dordrecht, Holland.
dell'Arciprete, D., R. Bersezio, F. Felletti, M. Giudici, A. Comunian, and, P. Renard, (2012), Comparison of three geostatistical methods for hydrofacies simulation: A test on alluvial sediments, Hydrogeol. J., 20, 299-311.
Doetsch, J., N. Linde, I. Coscia, S. A. Greenhalgh, and, A. G. Green, (2010), Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data, Geophysics, 75 (6), G53-G64, doi: 10.1190/1.3496476.
Doetsch, J., N. Linde, M. Pessognelli, A. G. Green, and, T. Günther, (2012), Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization, J. Appl. Geophys., 78, 68-76, doi: 10.1016/j.jappgeo.2011.04.008.
Eschard, R., B. Doligez, and, H. Beucher, (2002), Using quantitative outcrop database as a guide for geological reservoir modelling, in Geostatistics Rio 2000, edited by, M. Armstrong, et al., pp. 7-17, Kluwer, Dordrecht, Netherlands.
Feyen, L., and, J. Caers, (2006), Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations, Adv. Water Resour., 29 (6), 912-929.
Fogg, G. E., C. D. Noyes, and, S. F. Carle, (1998), Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting, Hydrogeol. J., 6, 131-143.
Fu, J. L., and, J. J. Gomez-Hernandez, (2009), A blocking Markov chain Monte Carlo method for inverse stochastic hydrogeological modeling, Math. Geosci., 41, 105-128, doi: 10.1007/s11004-008-9206-0.
Gibling, M. R., (2006), Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification, J. Sediment. Res., 76, 731-770.
Haddouchi, B., (1987), Etude géologique et hydrogéologique de la plaine alluviale de la Meuse en Belgique [in French], PhD thesis, Univ. of Liege, Liege, Belgium.
Hansen, T. M., K. S. Cordua, and, K. Moosegaard, (2012), Inverse problems with non trivial priors: Efficient solution through Gibbs sampling, Comput. Geosci., 16, 593-611, doi: 10.1007/s10596-011-9271-1.
Hermans, T., A. Vandenbohede, L. Lebbe, and, F. Nguyen, (2012), Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data, J. Hydrol., 438-439, 168-180, doi: 10.1016/j.jhydrol.2012.03.021.
Hermans, T., J. Caers, and, F. Nguyen, (2014), Assessing the probability of training image-based geological scenarios using geophysical data, in Mathematics of Planet Earth-Proceedings of the 15th Annual Meeting of the IAMG, edited by, E. Pardo-Iguzquiza, et al., pp. 679-682, Springer-Verlag, Berlin Heidelberg, Germany.
Hermans, T., S. Wildemeersch, P. Jamin, P. Orban, S. Brouyère, A. Dassargues, and, F. Nguyen, (2015), Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT, Geothermics, 53, 14-26, doi: 10.1016/j.geothermics.2014.03.013.
Hinnel, A. C., T. P. A. Ferre, J. A. Vrugt, J. A. Huisman, S. Moysey, J. Rings, and, M. Kowalsky, (2010), Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion, Water Resour. Res., 46, W00D40, doi: 10.1029/2008WR007060.
Hoeting, J. A., D. Madigan, A. E. Raftery, and, C. T. Volinsky, (1999), Bayesian model averaging: A tutorial, Stat. Sci., 14 (4), 382-417.
Hoffman, B. T., J. K. Caers, X. H. Wen, and, S. Strebelle, (2006), A practical data-integration approach to history-matching: Application to a deepwater reservoir, SPE J., 11, 464-479.
Hu, L. Y., and, T. Chugunova, (2008), Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review, Water Resour. Res., 44, W11413, doi: 10.1029/2088WR006993.
Huysmans, M., and, A. Dassargues, (2009), Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium), Hydrogeol. J., 17 (8), 1901-1911, doi: 10.1007/s10040-009-0495-2.
Huysmans, M., and, A. Dassargues, (2011), Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces, Math. Geosci., 43, 521-536, doi: 10.1007/s11004-011-9336-7.
Irving, J., and, K. Singha, (2010), Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities, Water Resour. Res., 46, W11514, doi: 10.1029/2009WR008340.
Jung, A., and, T. Aigner, (2012), Carbonate geobodies: Hierarchical classification and database-A new workflow for 3D reservoir modelling, J. Pet. Geol., 35 (1), 49-65.
Kenter, J. A. M., and, P. M. Harris, (2005), Web-based outcrop digital analog database (WODAD): A public relational database archiving carbonate platform margins in the geological record, Geophys. Res. Abstr., 7, 03710.
Khodabakhshi, M., and, B. Jafarpour, (2013), A Bayesian mixture-modeling approach for flow-conditioned multiple-point statistical facies simulation from uncertain training images, Water Resour. Res., 49 (1), 328-342, doi: 10.1029/2011WR010787.
Kiessling, W., and, E. Flügel, (2002), Paleo-reefs-A database on Phanerozoic reefs, in Phanerozoic Reef Patterns, SEPM Spec. Publ., pp. 77-92, SEPM, Tulsa, Okla.
Li, X., and, F. T.-C. Tsai, (2009), Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod, Water Resour. Res., 45, W09403, doi: 10.1029/2008WR007488.
Lochbühler, T., J. A. Vrugt, M. Sadegh, and, N. Linde, (2015), Summary statistics from training images as prior information in probabilistic inversion, Geophys. J. Int., 201 (1), 157-171.
Maharaja, A., (2008), TiGenerator: Object-based training image generator, Comput. Geosci., 34, 1753-1761.
Mariethoz, G., and, J. Caers, (2015), Multiple-Point Geostatistics: Stochastic Modeling With Training Images, 374 pp., John Wiley & Sons, Hoboken, N. J.
Mariethoz, G., P. Renard, and, J. Caers, (2010), Bayesian inverse problem and optimization with iterative spatial resampling, Water Resour. Res., 46, W11530, doi: 10.1029/2008WR007621.
Martinius, A. W., and, A. Naess, (2005), Uncertainty analysis of fluvial outcrop data for stochastic reservoir modelling, Pet. Geosci., 11, 203-214.
McKenna, S. A., and, E. P. Poeter, (1995), Field example of data fusion in site characterization, Water Resour. Res., 31 (12), 3229-3240.
Moysey, S., K. Singha, and, R. Knight, (2005), A framework for inferring field-scale rock physics relationships through numerical simulation, Geophys. Res. Lett., 32, L08304, doi: 10.1029/2004GL022152.
Neuman, S. P., (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ. Res. Risk Assess., 17, 291-305.
Oware, E. K., S. Moysey, and, T. Khan, (2013), Physically based regularization of hydrogeophysical inverse problems for improved imaging of process-driven systems, Water Resour. Res., 49, 6238-6247, doi: 10.1002/wrcr.20462.
Park, H., C. Scheidt, D. Fenwick, A. Boucher, and, J. Caers, (2013), History matching and uncertainty quantification of facies models with multiple geological interpretations, Comput. Geosci., 17, 609-621.
Pyrcz, M. J., J. B. Boisvert, and, C. V. Deutsch, (2008), A library of training images for fluvial and deepwater reservoirs and associated code, Comput. Geosci., 34 (5), 542-560.
Refsgaard, J. C., S. Christensen, T. Sonnenborg, D. Seifert, A. L. Hojberg, and, L. Troldborg, (2012), Review of strategies for handling geological uncertainty in groundwater flow and transport modeling, Adv. Water Resour., 36, 36-50.
Rentier, C., (2003), Méthode stochastique de délimitation des zones de protection autour des captages d'eau-Conditionnement par des mesures de conductivité hydraulique K, de hauteur piézométrique h et de résistivité ρ [in French], PhD thesis, Univ. of Liege, Liege, Belgium.
Robert, T., A. Dassargues, S. Brouyère, O. Kaufmann, V. Hallet, and, F. Nguyen, (2011), Assessing the contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a water well drilling program in fractured/karstified limestones, J. Appl. Geophys., 75, 42-53.
Roggero, F., and, L. Y. Hu, (1998), Gradual deformation of continuous geostatistical models for history matching, paper presented at Proceedings Society of Petroleum Engineers 49004, Annual Technical Conference, Soc. of Pet. Eng., New Orleans, La.
Rojas, R., L. Feyen, and, A. Dassargues, (2008), Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging, Water Resour. Res., 44, W12418, doi: 10.1029/2008WR006908.
Ronayne, M. J., S. M. Gorelick, and, J. Caers, (2008), Identifying discrete geologic structures that produce anomalous hydraulic response: An inverse modeling approach, Water Resour. Res., 44, W08426, doi: 10.1029/2007WR006635.
Scheidt, C., P. Tahmasebi, M. Pontiggia, A. Da Pra, and, J. Caers, (2015), Updating joint uncertainty in trend and depositional scenario for reservoir exploration and early appraisal, Comput. Geosci., doi: 10.1007/s10596-015-9491-x.
Singha, K., and, S. Moysey, (2006), Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock-physics relations, Geophysics, 71, A25-A28.
Slater, L., A. Binley, W. Daily, and, R. Johnson, (2000), Cross-hole electrical imaging of a controlled saline tracer injection, J. Appl. Geophys., 44, 85-102.
Strebelle, S., (2000), Sequential Simulation Drawing Structures From Training Images, Stanford Univ., Stanford, Calif.
Strebelle, S., (2002), Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34 (1), 1-21.
Tarantola, A., (2006), Popper, Bayes and the inverse problems, Nat. Phys., 2, 492-494.
Therrien, R., R. McLaren, E. Sudicky, and, S. Panday, (2010), HydroGeoSphere: A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport, Groundwater Simul. Group, Waterloo, ON, Canada.
Tikhonov, A., and, V. Arsenin, (1977), Solution of Ill-Posed Problems, Winston and Sons, Washington, D. C.
Trainor, W., (2010), On the Value of Information for Spatial Problems in the Earth Sciences, Stanford Univ., Stanford, Calif.
Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, and, G. Schoups, (2013), Hydrologic data assimilation using particle Markov chain Monte Carlo simulations: Theory, concepts and applications, Adv. Water Res., 51, 457-478, doi: 10.1016/j.advwatres.2012.04.002.
Wildemeersch, S., P. Jamin, P. Orban, T. Hermans, F. Nguyen, S. Brouyère, and, A. Dassargues, (2014), Coupling heat and chemical tracer experiments for the estimation of heat transfer parameters in shallow alluvial aquifers, J. Contam. Hydrol., 169, 90-99, doi: 10.1016/j.jconhyd.2014.08.001.
Ye, M., S. P. Neuman, and, P. D. Meyer, (2004), Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff, Water Resour. Res., 40, W05113, doi: 10.1029/2003WR002557.
Zhang, Y., C. T. Green, and, G. E. Fogg, (2013), The impact of medium architecture of alluvial settings on non-Fickian transport, Adv. Water Resour., 54, 78-99.
Zhou, H., J. J. Gõmez-Hernández, and, L. Li, (2014), Inverse methods in hydrogeology: Evolution and recent trends, Adv. Water Resour., 63, 22-37.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.