[en] Solid tumors comprise cancer cells and different supportive stromal cells, including mesenchymal stem cells (MSCs), which have recently been shown to enhance tumor growth and metastasis. We provide new mechanistic insights into how bone marrow (BM)-derived MSCs co-injected with Lewis lung carcinoma cells promote tumor growth and metastasis in mice. The proinvasive effect of BM-MSCs exerted on tumor cells relies on an unprecedented juxtacrine action of BM-MSC, leading to the trans-shedding of amphiregulin (AREG) from the tumor cell membrane by tumor necrosis factor-α-converting enzyme carried by the BM-MSC plasma membrane. The released soluble AREG activates cancer cells and promotes their invasiveness. This novel concept is supported by the exploitation of different 2D and 3D culture systems and by pharmacological approaches using a tumor necrosis factor-α-converting enzyme inhibitor and AREG-blocking antibodies. Altogether, we here assign a new function to BM-MSC in tumor progression and establish an uncovered link between AREG and BM-MSC.
Disciplines :
Oncology
Author, co-author :
Carnet, Oriane ✱; Université de Liège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Lecomte, Julie ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Masset, Anne; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Primac, Irina ; Université de Liège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Durré, Tania ; Université de Liège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Maertens, Ludovic; Université of Liège - ULiège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Detry, Benoît; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Blacher, Silvia ; Université de Liège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Gilles, Christine ; Université de Liège > Département des sciences cliniques > LBTD/GIGA-cancer
Péqueux, Christel ; Université de Liège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Paupert, Jenny ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > LBTD/GIGA-cancer
Foidart, Jean-Michel ; Université de Liège > Département des sciences cliniques > Gynécologie - Obstétrique
Jerusalem, Guy ; Université de Liège > Département des sciences cliniques > Oncologie
Cataldo, Didier ; Université de Liège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Noël, Agnès ; Université de Liège > Département des sciences cliniques > LBTD/GIGA-cancer
Joyce JA, Pollard JW Microenvironmental regulation of metastasis. Nat Rev Cancer 2009, 9:239-252.
Hanahan D, Weinberg RA Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
Quail DF, Joyce JA Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013, 19:1423-1437.
Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011, 19:257-272.
Bergfeld SA, DeClerck YA Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 2010, 29:249-261.
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449:557-563.
Lecomte J, Masset A, Blacher S, Maertens L, Gothot A, Delgaudine M, Bruyere F, Carnet O, Paupert J, Illemann M, et al. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia 2012, 14:943-951.
Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula VL, Weil M, Andreeff M, Marini FC Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009, 27:2614-2623.
Bernardo ME, Locatelli F, Fibbe WE Mesenchymal stromal cells. Ann N Y Acad Sci 2009, 1176:101-117.
Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011, 32:477-487.
Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S, Saijo Y Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 2011, 17:579-587.
Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009, 4:e4992.
Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006, 203:1235-1247.
Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C, Li SF, Long D, Tan WD, Mao YQ, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 2008, 7:245-251.
Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003, 102:3837-3844.
Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 2006, 82:1060-1066.
El-Haibi CP, Karnoub AE Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J Mammary Gland Biol Neoplasia 2010, 15:399-409.
Sternlicht MD, Sunnarborg SW The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia 2008, 13:181-194.
Rose-John S ADAM17, shedding, TACE as therapeutic targets. Pharmacol Res 2013, 71:19-22.
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 2011, 1816:119-131.
Kenny PA TACE: a new target in epidermal growth factor receptor dependent tumors. Differentiation 2007, 75:800-808.
Scheller J, Chalaris A, Garbers C, Rose-John S ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 2011, 32:380-387.
Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004, 103:1662-1668.
Soille P Morphological Analysis, Principles and Application 1999, Springer, [Vol.].
Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009, 113:4197-4205.
Horiuchi K A brief history of tumor necrosis factor alpha-converting enzyme: an overview of ectodomain shedding. Keio J Med 2013, 62:29-36.
Karp JM, Leng Teo GS Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 2009, 4:206-216.
Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 2010, 19:667-679.
Ebert M, Yokoyama M, Kobrin MS, Friess H, Lopez ME, Buchler MW, Johnson GR, Korc M Induction and expression of amphiregulin in human pancreatic cancer. Cancer Res 1994, 54:3959-3962.
Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Ayhan A, Haruma K, Kajiyama G, Johnson GR, Tahara E Expression of amphiregulin, a novel gene of the epidermal growth factor family, in human gastric carcinomas. Jpn J Cancer Res 1993, 84:879-884.
Chang MH, Ahn HK, Lee J, Jung CK, Choi YL, Park YH, Ahn JS, Park K, Ahn MJ Clinical impact of amphiregulin expression in patients with epidermal growth factor receptor (EGFR) wild-type nonsmall cell lung cancer treated with EGFR-tyrosine kinase inhibitors. Cancer 2011, 117:143-151.
Stabile LP, Rothstein ME, Keohavong P, Lenzner D, Land SR, Gaither-Davis AL, Kim KJ, Kaminski N, Siegfried JM Targeting of both the c-Met and EGFR pathways results in additive inhibition of lung tumorigenesis in transgenic mice. Cancers 2010, 2:2153-2170.
Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366:2-16.
Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 1999, 96:6235-6240.
Baillo A, Giroux C, Ethier SP Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J Cell Physiol 2011, 226:2691-2701.
Silvy M, Giusti C, Martin PM, Berthois Y Differential regulation of cell proliferation and protease secretion by epidermal growth factor and amphiregulin in tumoral versus normal breast epithelial cells. Br J Cancer 2001, 84:936-945.
Chung E, Cook PW, Parkos CA, Park YK, Pittelkow MR, Coffey RJ Amphiregulin causes functional downregulation of adherens junctions in psoriasis. J Invest Dermatol 2005, 124:1134-1140.
Chung E, Graves-Deal R, Franklin JL, Coffey RJ Differential effects of amphiregulin and TGF-alpha on the morphology of MDCK cells. Exp Cell Res 2005, 309:149-160.
Kondapaka SB, Fridman R, Reddy KB Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer 1997, 70:722-726.
Menashi S, Serova M, Ma L, Vignot S, Mourah S, Calvo F Regulation of extracellular matrix metalloproteinase inducer and matrix metalloproteinase expression by amphiregulin in transformed human breast epithelial cells. Cancer Res 2003, 63:7575-7580.
Maquoi E, Sounni NE, Devy L, Olivier F, Frankenne F, Krell HW, Grams F, Foidart JM, Noel A Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2,4,6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res 2004, 10:4038-4047.
Willems SH, Tape CJ, Stanley PL, Taylor NA, Mills IG, Neal DE, McCafferty J, Murphy G Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem J 2010, 428:439-450.
Killock DJ, Ivetic A The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and l-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding. Biochem J 2010, 428:293-304.
Horiuchi K, Le Gall S, Schulte M, Yamaguchi T, Reiss K, Murphy G, Toyama Y, Hartmann D, Saftig P, Blobel CP Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 2007, 18:176-188.
Le Gall SM, Maretzky T, Issuree PD, Niu XD, Reiss K, Saftig P, Khokha R, Lundell D, Blobel CP ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 2010, 123:3913-3922.
Dusterhoft S, Jung S, Hung CW, Tholey A, Sonnichsen FD, Grotzinger J, Lorenzen I Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J Am Chem Soc 2013, 135:5776-5781.
Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005, 123:291-304.
Guzman MJ, Shao J, Sheng H Pro-neoplastic effects of amphiregulin in colorectal carcinogenesis. J Gastrointest Cancer 2013, 44:211-221.
Cekanova M, Masi T, Plummer HK, Majidi M, Fedorocko P, Schuller HM Pulmonary fibroblasts stimulate the proliferation of cell lines from human lung adenocarcinomas. Anti-Cancer Drugs 2006, 17:771-781.
Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008, 68:4331-4339.
Cho JA, Park H, Lim EH, Lee KW Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol 2012, 40:130-138.
Gao MQ, Kim BG, Kang S, Choi YP, Yoon JH, Cho NH Human breast cancer-associated fibroblasts enhance cancer cell proliferation through increased TGF-alpha cleavage by ADAM17. Cancer Lett 2013, 336:240-246.
De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, Maynard D, Denys H, Lambein K, Braems G, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 2013, 62:550-560.