Reference : In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced...
Scientific journals : Article
Engineering, computing & technology : Multidisciplinary, general & others
In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.
Chai, Yoke Chin [> >]
Geris, Liesbet mailto [Université de Liège > Département d'aérospatiale et mécanique > Génie biomécanique >]
Bolander, Johanna [> >]
Pyka, Grzegorz [> >]
Van Bael, Simon [> >]
Luyten, Frank P. [> >]
Schrooten, Jan [> >]
BioResearch open access
United States
[en] biomineralization ; bone regeneration ; devitalization ; mineralized extracellular matrix ; osteoinductive carriers
[en] Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions.

File(s) associated to this reference

Fulltext file(s):

Open access
BioRes OA_2014_Chai.pdfPublisher postprint768.87 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.