Blass, J. P., Gleason, P., Brush, D., DiPonte, P. & Thaler, H. Thiamine and Alzheimer's disease. A pilot study. Arch Neurol 45, 833-835 (1988).
Meador, K. J. et al. Evidence for a central cholinergic effect of high-dose thiamine. Ann Neurol 34, 724-726, doi: 10.1002/ana.410340516 (1993).
Lu'o'ng, K. & Nguyen, L. T. Thiamine and Parkinson's disease. J Neurol Sci 316, 1-8, doi: 10.1016/j.jns.2012.02.008 (2012).
Luong, K. V. & Nguyen, L. T. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 19, 461-468, doi: 10.1111/cns.12078 (2013).
Costantini, A., Pala, M. I., Compagnoni, L. & Colangeli, M. High-dose thiamine as initial treatment for Parkinson's disease. BMJ Case Rep 2013, doi: 10.1136/bcr-2013-009289 (2013).
Gangolf, M. et al. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One 5, e13616, doi: 10.1371/journal.pone.0013616 (2010).
Mastrogiacoma, F., Bettendorff, L., Grisar, T. & Kish, S. J. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease. Ann Neurol 39, 585-591, doi: 10.1002/ana.410390507 (1996).
Bettendorff, L. et al. Low thiamine diphosphate levels in brains of patients with frontal lobe degeneration of the non-Alzheimer's type. J Neurochem 69, 2005-2010 (1997).
Minz, B. Sur la liberation de la vitamine B1 par le trone isole de nerf pneumogastrique soumis a l'exitation electrique. C.R.Soc. Biol. 127, 1251-1253 (1938).
von Muralt, A. The role of thiamine (vitamin B1) in nerve excitation. Exp Cell Res 14, 72-79 (1958).
von Muralt, A. Thiamine and peripheral neurophysiology. Gesundheit Derending 27, (1947).
Bettendorff, L. & Wins, P. Biological functions of thiamine derivatives: Focus on non-coenzyme roles. OA Biochemistry 1, 1-10 (2013).
Parkhomenko Iu, M., Donchenko, G. V. & Protasova, Z. S. [The neural activity of thiamine: facts and hypotheses]. Ukr Biokhim Zh 68, 3-14 (1996).
Parkhomenko Iu, M. et al. [Existence of two different active sites on thiamine binding protein in plasma membranes of synaptosomes]. Ukr Biokhim Zh 82, 34-41 (2010).
Sidorova, A. A., Stepanenko, S. P. & Parkhomenko Iu, M. [Characteristics of thiamine triphosphatase from neural cells plasma membranes]. Ukr Biokhim Zh 81, 57-65 (2009).
Parkhomenko Yu, M., Protasova, Z. G., Chernysh, I. Y. & Pkhakadze, E. G. Modulation of acethylcholine synthesis in rat brain synaptosomes by thiamine and its relation to the regulation of the pyruvate dehydrogenase complex activity. In: Biochemistry and Physiology of thiamin diphosphate enzymes (H. Bisswanger & J. Ullrich, eds), VCN, Weinheim, Germany, pp. 375-381 (1991).
Parkhomenko Yu, M., Protasova, Z. S., Yanchiy, O. R., Khosta, k. & Donchenko, G. V. Localization of thiamine-binding protein in synaptosomes from the rat brain. Neurophysiology (English translation from Russian) 33, 135-139 (2001).
Nghiem, H. O., Bettendorff, L. & Changeux, J. P. Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor. FASEB J 14, 543-554 (2000).
Nabokina, S. M. et al. Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter. J Biol Chem 289, 4405-4416, doi: 10.1074/jbc.M113.528257 (2014).
Bettendorff, L. et al. Discovery of a natural thiamine adenine nucleotide. Nat Chem Biol 3, 211-212, doi: 10.1038/nchembio867 (2007).
Bunik, V. I., Tylicki, A. & Lukashev, N. V. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 280, 6412-6442, doi: 10.1111/febs.12512 (2013).
Bunik, V. I. Thiamin-dependent enzymes: new perspectives from the interface between chemistry and biology. FEBS J 280, 6373, doi: 10.1111/febs.12589 (2013).
Zhang, X. et al. Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models. J Biol Chem 288, 22042-22056, doi: 10.1074/jbc.M112.436402 (2013).
Haas, H. Thiamin and the brain. Annual Rev of Nutr 8, 483-515 (1998).
Parkhomenko, Y. M., Protasova, Z. S., Postoenko, V. A. & Donchenko, G. V. Localization of thiamine synthesis and degradation enzymes in the rat brain synaptosomes. Reports of the National Academy of Sciences of Ukraine (In Russian) 8, 73-76 (1988).
Petrov, S. A. [Thiamine metabolism in mouse organs and tissues in vivo and in vitro]. Fiziol Zh 38, 79-85 (1992).
Matsuo, T. & Suzuoki, Z. The occurrence of 4-methylthiazole-5-acetic acid as a thiamine metabolite in rabbit, dog, man and rat. J Biochem 65, 953-960 (1969).
Shatursky, O. Y., Volkova, T. M., Romanenko, O. V., Himmelreich, N. H. & Grishin, E. V. Vitamin B1 thiazole derivative reduces transmembrane current through ionic channels formed by toxins from black widow spider venom and sea anemone in planar phospholipid membranes. Biochim Biophys Acta 1768, 207-217, doi: 10.1016/j.bbamem.2006.10.012 (2007).
Vovk, A. I. & Romanenko, A. V. Thiazol analogs of vitamin B1 that depress neuromuscular transmission. Dokl Acad Nauk Ukr (in Russian) 5, 119-121 (1993).
Romanenko, A. V., Gnatenko, V. M., Vladimirova, I. A. & Vovk, A. I. Pre- and post-synaptic modulation of neuromuscular transmission in smooth muscles by thiazole analogs of vitamin B1. Neurophysiologia 27, 297-306 (1995).
Jin, J. et al. Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol Cell Proteomics 6, 845-859, doi: 10.1074/mcp.M600182-MCP200 (2007).
Kahne, T. et al. Synaptic proteome changes in mouse brain regions upon auditory discrimination learning. Proteomics 12, 2433-2444, doi: 10.1002/pmic.201100669 (2012).
Gigliobianco, T. et al. An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate. Sci Rep 3, 1071, doi: 10.1038/srep01071 (2013).
Klyashchitsky, B. A., Pozdnev, V. F., Mitina, V. K., Voskoboev, A. I. & Chernikevich, I. P. Isolation and purification of biopolymers by biospecific affinity chromatography. V. Affinity chromatography of pyruvate decarboxylase from brewer's yeast. Bioorganicheskaya Khimiya 6, 1572-1579 (1980).
Bunik, V., Kaehne, T., Degtyarev, D., Shcherbakova, T. & Reiser, G. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. FEBS J 275, 4990-5006, doi: 10.1111/j.1742-4658.2008.06632.x (2008).
Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850-858 (1996).
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44-57 (2008).
Jensen, L. J. et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37, D412-D416, doi: 10.1093/nar/gkn760 (2009).
Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41, D377-386, doi: 10.1093/nar/gks1118 (2013).
Sigrist, C. J. et al. New and continuing developments at PROSITE. Nucleic Acids Res 41, D344-D347, doi: 10.1093/nar/gks1067 (2013).
Sigrist, C. J. et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3, 265-274 (2002).
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191, doi: 10.1093/bioinformatics/btp033 (2009).
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539, doi: 10.1038/msb.2011.75 (2011).
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113, doi: 10.1186/1471-2105-5-113 (2004).
DeLano, W. L. The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific (2002).
Soriano, E. V. et al. Structural similarities between thiamin-binding protein and thiaminase-I suggest a common ancestor. Biochemistry 47, 1346-1357, doi: 10.1021/bi7018282 (2008).
Hawkins, C. F., Borges, A. & Perham, R. N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255, 77-82 (1989).
Bunik, V. I. & Degtyarev, D. Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins. Proteins 71, 874-890, doi: 10.1002/prot.21766 (2008).
Ianchii, O. R., Parkhomenko Iu, M. & Donchenko, H. V. [Properties of thiamine-binding proteins isolated from rat brain, liver and kidneys]. Ukr Biokhim Zh 73, 107-111 (2001).
Chan, K. M., Delfert, D. & Junger, K. D. A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157, 375-380 (1986).
di Salvo, M. L., Hunt, S. & Schirch, V. Expression, purification, and kinetic constants for human and Escherichia coli pyridoxal kinases. Protein Expr Purif 36, 300-306, doi: 10.1016/j.pep.2004.04.021 (2004).
Musayev, F. N. et al. Crystal Structure of human pyridoxal kinase: structural basis of M(+) and M(2+) activation. Protein Sci 16, 2184-2194, doi: 10.1110/ps.073022107 (2007).
Elsinghorst, P. W., di Salvo, M. L., Parroni, A. & Contestabile, R. Inhibition of human pyridoxal kinase by 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI). J Enzyme Inhib Med Chem 30, 336-340, doi: 10.3109/14756366.2014.915396 (2014).
Lee, Z. H. et al. Identification of a brain specific protein that associates with a refsum disease gene product, phytanoyl-CoA alpha-hydroxylase. Brain Res Mol Brain Res 75, 237-247 (2000).
Wiczer, B. M. & Bernlohr, D. A. A novel role for fatty acid transport protein 1 in the regulation of tricarboxylic acid cycle and mitochondrial function in 3T3-L1 adipocytes. J Lipid Res 50, 2502-2513, doi: 10.1194/jlr.M900218-JLR200 (2009).
Bandyopadhyay, S. & Cookson, M. R. Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 4, 1-9, doi: 10.1186/1471-2148-4-6 (2004).
Shangari, N., Mehta, R. & O'Brien P., J. Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content. Chem Biol Interact 165, 146-154, doi: 10.1016/j.cbi.2006.11.009 (2007).
Salem, H. M. Glyoxalase and methylglyoxal in thiamine-deficient rats. Biochem J 57, 227-230 (1954).
Trofimova, L. K. et al. Consequences of the alpha-ketoglutarate dehydrogenase inhibition for neuronal metabolism and survival: implications for neurodegenerative diseases. Curr Med Chem 19, 5895-5906 (2012).
Araujo, W. L. et al. On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. Amino Acids 44, 683-700, doi: 10.1007/s00726-012-1392-x (2013).
Safo, M. K. et al. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases. J Bacteriol 188, 4542-4552, doi: 10.1128/JB.00122-06 (2006).
Safo, M. K. et al. Crystal structure of the PdxY Protein from Escherichia coli. J Bacteriol 186, 8074-8082, doi: 10.1128/JB.186.23.8074-8082.2004 (2004).
Smith, T. J. et al. The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318, 765-777, doi: 10.1016/S0022-2836(02)00161-4 (2002).
Chernikevitsch, I. P., Voskoboev, A. L. & Klyashchitsky, B. A. Isoation and purification of biopolymers by biospecific affinity chromatography. VII. Purification of thiamine pyrophospholinase from brewer's yeast by affinity-adsorbent chromatography. Bioorganicheskaya Khimiya (in Russian) 7, 209-216 (1981).
Visser, J., Strating, M. & van Dongen, W. Affinity chromatography studies with the pyruvate dehydrogenase complex of wild-type Escherichia coli. Biochim Biophys Acta 524, 37-44 (1978).
Gangolf, M., Wins, P., Thiry, M., El Moualij, B. & Bettendorff, L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J Biol Chem 285, 583-594, doi: 10.1074/jbc.M109.054379 (2010).
Bettendorff, L. Thiamine homeostasis in neuroblastoma cells. Neurochem Int 26, 295-302 (1995).
Parkhomenko, Y. M. et al. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels. J Neurochem 117, 1055-1065, doi: 10.1111/j.1471-4159.2011.07283.x (2011).
Bunik, V. I. 2-Oxo acid dehydrogenase complexes in redox regulation. Eur J Biochem 270, 1036-1042 (2003).
Bunik, V., Raddatz, G. & Strumilo, S. Translating enzymology into metabolic regulation: the case of the 2-oxoglutarate dehydrogenase multienzyme complex. Curr Chem Biol 7, (2013).
Stepuro, A. I., Adamchuk, R. I., Oparin, A. Y. & Stepuro, II. Thiamine inhibits formation of dityrosine, a specific marker of oxidative injury, in reactions catalyzed by oxoferryl forms of hemoglobin. Biochemistry (Mosc) 73, 1031-1041 (2008).
Parkhomenko Iu, M., Stepuro, II, Donchenko, G. V. & Stepuro, V. I. [Oxidized derivatives of thiamine: formation, properties, biological role]. Ukr Biokhim Zh 84, 5-24 (2012).
Bozic, I. et al. Benfotiamine Attenuates Inflammatory Response in LPS Stimulated BV-2 Microglia. PLoS One 10, e0118372, doi: 10.1371/journal.pone.0118372 (2015).
Wolak, N., Kowalska, E., Kozik, A. & Rapala-Kozik, M. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 14, 1249-1262, doi: 10.1111/1567-1364.12218 (2014).
di Salvo, M. L., Contestabile, R. & Safo, M. K. Vitamin B(6) salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta 1814, 1597-1608, doi: 10.1016/j.bbapap.2010.12.006 (2011).
Guan, K. L. & Xiong, Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36, 108-116, doi: 10.1016/j.tibs.2010.09.003 (2011).
Brochier, C. et al. Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons. J Neurosci 33, 8621-8632, doi: 10.1523/JNEUROSCI.5214-12.2013 (2013).
Kim, E. Y. et al. Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. J Lipid Res 53, 1864-1876, doi: 10.1194/jlr.M026567 (2012).
Kim, E. Y., Han, B. S., Kim, W. K., Lee, S. C. & Bae, K. H. Acceleration of adipogenic differentiation via acetylation of malate dehydrogenase 2. Biochem Biophys Res Commun 441, 77-82, doi: 10.1016/j.bbrc.2013.10.016 (2013).
Pylypchuk, S., Parkhomenko Iu, M., Protasova, Z. S., Vovk, A. I. & Donchenko, H. V. [Interaction of rat brain thiamine kinase with thiamine and its derivatives]. Ukr Biokhim Zh 73, 51-56 (2001).
Chin, R. M. et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397-401, doi: 10.1038/nature13264 (2014).
Liu, S. et al. Metabolic effects of acute thiamine depletion are reversed by rapamycin in breast and leukemia cells. PLoS One 9, e85702, doi: 10.1371/journal.pone.0085702 (2014).
Finnemann, J. & Schjoerring, J. K. Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. Plant J 24, 171-181 (2000).
Boyd-Kimball, D. et al. Proteomic identification of proteins oxidized by Abeta(1-42) in synaptosomes: implications for Alzheimer's disease. Brain Res 1044, 206-215, doi: 10.1016/j.brainres.2005.02.086 (2005).
Bunik, V. I. & Sievers, C. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur J Biochem 269, 5004-5015 (2002).
Zundorf, G., Kahlert, S., Bunik, V. I. & Reiser, G. alpha-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Neuroscience 158, 610-616, doi: 10.1016/j.neuroscience.2008.10.015 (2009).
Quinlan, C. L. et al. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289, 8312-8325, doi: 10.1074/jbc.M113.545301 (2014).
Bunik, V. et al. Interaction of thioredoxins with target proteins: role of particular structural elements and electrostatic properties of thioredoxins in their interplay with 2-oxoacid dehydrogenase complexes. Protein Sci 8, 65-74, doi: 10.1110/ps.8.1.65 (1999).
Scarafoni, A. et al. Biochemical and functional characterization of an albumin protein belonging to the hemopexin superfamily from Lens culinaris seeds. J Agric Food Chem 59, 9637-9644, doi: 10.1021/jf202026d (2011).
Fahien, L. A., MacDonald, M. J., Teller, J. K., Fibich, B. & Fahien, C. M. Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the alpha-ketoglutarate dehydrogenase complex. J Biol Chem 264, 12303-12312 (1989).
Robinson, J. B., Jr. & Srere, P. A. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J Biol Chem 260, 10800-10805 (1985).
Bruschi, S. A., Lindsay, J. G. & Crabb, J. W. Mitochondrial stress protein recognition of inactivated dehydrogenases during mammalian cell death. Proc Natl Acad Sci USA 95, 13413-13418 (1998).
McKenna, M. C. Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59, 525-533, doi: 10.1016/j.neuint.2011.07.003 (2011).
Beeckmans, S. & Kanarek, L. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase. Eur J Biochem 117, 527-535 (1981).
Teller, J. K., Fahien, L. A. & Valdivia, E. Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver. J Biol Chem 265, 19486-19494 (1990).
Kim, Y. T., Kwok, F. & Churchich, J. E. Interactions of pyridoxal kinase and aspartate aminotransferase emission anisotropy and compartmentation studies. J Biol Chem 263, 13712-13717 (1988).
Ge, F. et al. Identification of novel 14-3-3zeta interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res 9, 5848-5858, doi: 10.1021/pr100616g (2010).
Meek, S. E., Lane, W. S. & Piwnica-Worms, H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem 279, 32046-32054, doi: 10.1074/jbc.M403044200 (2004).
Jin, J. et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14, 1436-1450, doi: 10.1016/j.cub.2004.07.051 (2004).
Boyd-Kimball, D. et al. Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid betapeptide (1-42) into rat brain: implications for Alzheimer's disease. Neuroscience 132, 313-324, doi: 10.1016/j.neuroscience.2004.12.022 (2005).
Wang, D. et al. Ca2+ -Calmodulin regulates SNARE assembly and spontaneous neurotransmitter release via v-ATPase subunit V0a1. J Cell Biol 205, 21-31, doi: 10.1083/jcb.201312109 (2014).
Hayashi, N., Izumi, Y., Titani, K. & Matsushima, N. The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex. Protein Sci 9, 1905-1913, doi: 10.1110/ps.9.10.1905 (2000).
Neltner, B. S., Zhao, Y., Sacks, D. B. & Davis, H. W. Thrombin-induced phosphorylation of MARCKS does not alter its interactions with calmodulin or actin. Cell Signal 12, 71-79 (2000).
Nicol, S., Rahman, D. & Baines, A. J. Interaction of synapsin IIb with calmodulin: identification of a high affinity site. Biochem Soc Trans 26, S109 (1998).
Lu, M., Ammar, D., Ives, H., Albrecht, F. & Gluck, S. L. Physical interaction between aldolase and vacuolar H+ -ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282, 24495-24503, doi: 10.1074/jbc.M702598200 (2007).
Mosevitsky, M. I. Nerve ending "signal" proteins GAP-43, MARCKS, and BASP1. Int Rev Cytol 245, 245-325, doi: 10.1016/S0074-7696(05)45007-X (2005).
Mosevitsky, M. & Silicheva, I. Subcellular and regional location of "brain" proteins BASP1 and MARCKS in kidney and testis. Acta Histochem 113, 13-18, doi: 10.1016/j.acthis.2009.07.002 (2011).
Fang, S. et al. MARCKS and HSP70 interactions regulate mucin secretion by human airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 304, L511-L518, doi: 10.1152/ajplung.00337.2012 (2013).
Giovedi, S. et al. Synapsin is a novel Rab3 effector protein on small synaptic vesicles. I. Identification and characterization of the synapsin I-Rab3 interactions in vitro and in intact nerve terminals. J Biol Chem 279, 43760-43768, doi: 10.1074/jbc.M403293200 (2004).
Sikorsky, A. F. & Goodman, S. R. The effect of synapsin I phosphorylation upon binding of synaptic vesicles to spectrin. Brain Res Bull 27, 195-198 (1991).
Benfenati, F., Valtorta, F., Chieregatti, E. & Greengard, P. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 8, 377-386 (1992).
Zhou, S. et al. Functional interaction of glutathione S-transferase pi and peroxiredoxin 6 in intact cells. Int J Biochem Cell Biol 45, 401-407, doi: 10.1016/j.biocel.2012.11.005 (2013).
Kim, I. K., Lee, K. J., Rhee, S., Seo, S. B. & Pak, J. H. Protective effects of peroxiredoxin 6 overexpression on amyloid betainduced apoptosis in PC12 cells. Free Radic Res 47, 836-846, doi: 10.3109/10715762.2013.833330 (2013).
Stanyon, H. F. & Viles, J. H. Human serum albumin can regulate amyloid-beta peptide fiber growth in the brain interstitium: implications for Alzheimer disease. J Biol Chem 287, 28163-28168, doi: 10.1074/jbc.C112.360800 (2012).
Hwang, J. H., Jiang, T., Kulkarni, S., Faure, N. & Schaffhausen, B. S. Protein phosphatase 2A isoforms utilizing Abeta scaffolds regulate differentiation through control of Akt protein. J Biol Chem 288, 32064-32073, doi: 10.1074/jbc.M113.497644 (2013).
Bennett, A. F. & Baines, A. J. Bundling of microtubules by synapsin 1. Characterization of bundling and interaction of distinct sites in synapsin 1 head and tail domains with different sites in tubulin. Eur J Biochem 206, 783-792 (1992).
Marcucci, R. et al. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J 30, 4211-4222, doi: 10.1038/emboj.2011.303 (2011).
Lussier, M. P., Gu, X., Lu, W. & Roche, K. W. Casein kinase 2 phosphorylates GluA1 and regulates its surface expression. Eur J Neurosci 39, 1148-1158, doi: 10.1111/ejn.12494 (2014).
Ventii, K. H. & Wilkinson, K. D. Protein partners of deubiquitinating enzymes. Biochem J 414, 161-175, doi: 10.1042/BJ20080798 (2008).
Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 122, 4401-4411, doi: 10.1172/JCI65289 (2012).
Hrabchak, C., Henderson, H. & Varmuza, S. A testis specific isoform of endophilin B1, endophilin B1t, interacts specifically with protein phosphatase-1c gamma2 in mouse testis and is abnormally expressed in PP1c gamma null mice. Biochemistry 46, 4635-4644, doi: 10.1021/bi6025837 (2007).
Ratliff, D. M., Vander Jagt, D. J., Eaton, R. P. & Vander Jagt, D. L. Increased levels of methylglyoxal-metabolizing enzymes in mononuclear and polymorphonuclear cells from insulin-dependent diabetic patients with diabetic complications: aldose reductase, glyoxalase I, and glyoxalase II-a clinical research center study. J Clin Endocrinol Metab 81, 488-492, doi: 10.1210/jcem.81.2.8636255 (1996).
Rivelli, J. F. et al. Retraction. Activation of Aldose Reductase by Interaction With Tubulin and Involvement of This Mechanism in Diabetic Cataract Formation. Diabetes. 10 April 2014 [Epub ahead of print]. DOI: 10.2337/db13-1265. Diabetes 63, 2896, doi: 10.2337/db13-1265 (2014).