Article (Scientific journals)
Multiple sparse priors for the M/EEG inverse problem.
Friston, Karl; Harrison, Lee; Daunizeau, Jean et al.
2008In NeuroImage, 39 (3), p. 1104-20
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S1053811907008786-main.pdf
Publisher postprint (2.14 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Algorithms; Bayes Theorem; Computer Simulation; Electroencephalography/statistics & numerical data; Evoked Potentials; Humans; Image Processing, Computer-Assisted/statistics & numerical data; Likelihood Functions; Magnetoencephalography/statistics & numerical data; Models, Statistical; Reproducibility of Results; Software
Abstract :
[en] This paper describes an application of hierarchical or empirical Bayes to the distributed source reconstruction problem in electro- and magnetoencephalography (EEG and MEG). The key contribution is the automatic selection of multiple cortical sources with compact spatial support that are specified in terms of empirical priors. This obviates the need to use priors with a specific form (e.g., smoothness or minimum norm) or with spatial structure (e.g., priors based on depth constraints or functional magnetic resonance imaging results). Furthermore, the inversion scheme allows for a sparse solution for distributed sources, of the sort enforced by equivalent current dipole (ECD) models. This means the approach automatically selects either a sparse or a distributed model, depending on the data. The scheme is compared with conventional applications of Bayesian solutions to quantify the improvement in performance.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Friston, Karl
Harrison, Lee
Daunizeau, Jean
Kiebel, Stefan
Phillips, Christophe  ;  Université de Liège > Centre de recherches du cyclotron
Trujillo-Barreto, Nelson
Henson, Richard
Flandin, Guillaume
Mattout, Jeremie
Language :
English
Title :
Multiple sparse priors for the M/EEG inverse problem.
Publication date :
2008
Journal title :
NeuroImage
ISSN :
1053-8119
eISSN :
1095-9572
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
39
Issue :
3
Pages :
1104-20
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 30 June 2015

Statistics


Number of views
128 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
513
Scopus citations®
without self-citations
455
OpenCitations
 
474
OpenAlex citations
 
600

Bibliography


Similar publications



Contact ORBi