[en] Urban development is a complex process influenced by a number of driving forces, including spatial planning, topography and urban economics. Identifying these drivers is crucial for the regulation of urban development and the calibration of predictive models. Existing land-use models generally consider urban development as a binary process, through the identification of built versus non-built areas. This study considers urban development as a continuum, characterized by different level of densities, which can be related to different driving forces.
A multinomial logistic regression model was employed to investigate the effects of drivers on different urban densities during the past decade in Wallonia, Belgium. Sixteen drivers were selected from sets of driving forces including accessibility, geophysical features, policies and socioeconomic factors.
It appears that urban development in Wallonia is remarkably influenced by land-use policies and accessibility. Most importantly, our results highlight that the impact of different drivers varies along with urban density.
Research Center/Unit :
LEMA
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
El Saeid Mustafa, Ahmed Mohamed ; Université de Liège > Département Argenco : Secteur A&U > LEMA (Local environment management and analysis)
Cools, Mario ; Université de Liège > Département Argenco : Secteur A&U > Transports et mobilité
Saadi, Ismaïl ; Université de Liège > Département Argenco : Secteur A&U > Transports et mobilité
Teller, Jacques ; Université de Liège > Département Argenco : Secteur A&U > Urbanisme et aménagement du territoire
Language :
English
Title :
Urban Development as a Continuum: A Multinomial Logistic Regression Approach
Publication date :
20 June 2015
Main work title :
Computational Science and Its Applications – ICCSA 2015, Part III
Arnfield, A.J., Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island (2003) Int. J. Climatol, 23, pp. 1-26
Xian, G., Crane, M., Assessments of urban growth in the Tampa Bay watershed using remote sensing data (2005) Remote Sens. Environ, 97, pp. 203-215
Li, X., Zhou, W., Ouyang, Z., Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? (2013) Appl. Geogr, 38, pp. 1-10
Maimaitijiang, M., Ghulam, A., Sandoval, J.S.O., Maimaitiyiming, M., Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data (2015) Int. J. Appl. Earth Obs. Geoinformation 35, Part B, pp. 161-174
Mustafa, A., Saadi, I., Cools, M., Teller, J., Measuring the Effect of Stochastic Perturbation Component in Cellular Automata Urban Growth Model (2014) Procedia Environ. Sci, 22, pp. 156-168
Puertas, O.L., Henríquez, C., Meza, F.J., Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045 (2014) Land Use Policy, 38, pp. 415-425
Wu, F., Calibration of stochastic cellular automata: The application to rural-urban land conversions (2002) Int. J. Geogr. Inf. Sci, 16, pp. 795-818
Munshi, T., Zuidgeest, M., Brussel, M., Van Maarseveen, M., Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad (2014) India Cities, 39, pp. 68-86
Bičik, I., Jeleček, L., Štěpánek, V., Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries (2001) Land Use Policy, 18, pp. 65-73
Serneels, S., Lambin, E.F., Proximate causes of land-use change in Narok District, Kenya: A spatial statistical model (2001) Agric. Ecosyst. Environ, 85, pp. 65-81
Verburg, P.H., Schot, P.P., Dijst, M.J., Veldkamp, A., Land use change modelling: Current practice and research priorities (2004) Geo. Journal, 61, pp. 309-324
Quan, B., Chen, J.-F., Qiu, H.-L., Römkens, M.J.M., Yang, X.-Q., Jiang, S.-F., Li, B.-C., Spatial-Temporal Pattern and Driving Forces of Land Use Changes in Xiamen (2006) Pedosphere, 16, pp. 477-488
Braimoh, A.K., Onishi, T., Spatial determinants of urban land use change in Lagos. Nigeria (2007) Land Use Policy, 24, pp. 502-515
Poelmans, L., Van Rompaey, A., Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders-Brussels region. Landsc (2009) Urban Plan, 93, pp. 10-19
Liu, C., Ma, X., Analysis to driving forces of land use change in Lu’an mining area (2011) Trans. Nonferrous Met. Soc. China, 21 (3), pp. s727-s732
Hallowell, G.D., Baran, P.K., Suburban change: A time series approach to measuring form and spatial configuration (2013) J. Space Syntax, 4, pp. 74-91
Shu, B., Zhang, H., Li, Y., Qu, Y., Chen, L., Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City. China (2014) Habitat Int, 43, pp. 181-190
Camagni, R., Gibelli, M.C., Rigamonti, P., Urban mobility and urban form: The social and environmental costs of different patterns of urban expansion (2002) Ecol. Econ, 40, pp. 199-216
Cammerer, H., Thieken, A.H., Verburg, P.H., Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria (2013) Nat. Hazards, 68, pp. 1243-1270
Brueckner, J.K., (2011) Lectures on Urban Economics, , MIT Press
http://statbel.fgov.be/fr/modules/publications/statistiques/population/population_-_chiffres_population_1990-2010.jsp, Belgian Federal Government: Population
Verhetsel, A., Thomas, I., Beelen, M., Commuting in Belgian metropolitan areas: The power of the Alonso-Muth model (2010) J. Transp. Land Use, p. 2
Antrop, M., Landscape change and the urbanization process in Europe (2004) Landsc. Urban Plan, 67, pp. 9-26
Lambin, E.F., Modelling Deforestation Process-A review-Trees Tropical Ecosystem Environment Observations by Satellites (1994) European Commission Luxembourg
Clark, W.A.V., Hosking, P.L., (1986) Statistical Methods for Geographers, , Wiley, New York
Lin, Y., Deng, X., Li, X., Ma, E., Comparison of multinomial logistic regression and logistic regression: Which is more efficient in allocating land use? (2014) Front. Earth Sci., pp. 1-12
Hosmer, D.W., Lemeshow, S., (2004) Applied Logistic Regression, , John Wiley & Sons
Poelmans, L., (2010) Modelling Urban Expansion and Its Hydrological Impacts
Poelmans, L., Van Rompaey, A., Complexity and performance of urban expansion models (2010) Comput. Environ. Urban Syst, 34, pp. 17-27
Belsley, D.A., Kuh, E., Welsh, R.E., (1980) Regression Diagnostics, , John Wiley and Sons, New York
Judge, G.G., Griffiths, W.E., Hill, R.C., Lütkepohl, H., Lee, T.-C., (1985) The Theory and Practice of Econometrics, , Wiley, New York
Kennedy, P., (2003) A Guide to Econometrics, , MIT Press
Flom, P.L., Multinomial and ordinal logistic regression using PROC LOGISTIC (2010) NESUG, , Baltimore
Knight, J.F., Lunetta, R.S., An experimental assessment of minimum mapping unit size (2003) IEEE Trans. Geosci. Remote Sens, 41, pp. 2132-2134
Saura, S., Effects of minimum mapping unit on land cover data spatial configuration and composition (2002) Int. J. Remote Sens, 23, pp. 4853-4880
Tannier, C., Thomas, I., Defining and characterizing urban boundaries: A fractal analysis of theoretical cities and Belgian cities (2013) Comput. Environ. Urban Syst, 41, pp. 234-248
http://statbel.fgov.be/fr/statistiques/chiffres/, Belgian Federal Government: Statistics Belgium
Economidou, M., Atanasiu, B., Despret, C., Maio, J., Nolte, I., Rapf, O., (2011) Europe’s Buildings under the Microscope, , Brussels, Buildings Performance Institute Europe (BPIE
Jenks, M., Dempsey, N., (2005) Future Forms and Design for Sustainable Cities, , Routledge
http://www.iweps.be/themes-page, Institut wallon de l’évaluation, de la prospective et de la statistique: Statistiques
Roy Chowdhury, P.K., Maithani, S., Modelling urban growth in the Indo-Gangetic plain using nighttime OLS data and cellular automata (2014) Int. J. Appl. Earth Obs. Geoinformation, 33, pp. 155-165