microelectromechanical systems (MEMS); Nonlinear; Dynamics
Abstract :
[en] The dynamic response of a mass-spring model of electrostatically actuated MEMS is analyzed when a voltage step is applied. The dynamics of a clamped-clamped beam representing a
micro-bridge system are also considered. To model and simulate the strong coupling between the electric and mechanical fields, a general finite element program has been developed based on a new monolithic formulation. The methodology proposed in this program does not require any iterative numerical scheme based on separate electrostatic and mechanical solvers, respectively.
Disciplines :
Mathematics Mechanical engineering Physics
Author, co-author :
Rochus, Véronique ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Golinval, Jean-Claude ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Language :
English
Title :
Dynamic analysis of the nonlinear behavior of MEMS using the finite element formulation
Publication date :
September 2005
Event name :
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
Event organizer :
ASME 2005
Event place :
Long Beach, United States
Event date :
September 24-28, 2005
Audience :
International
Main work title :
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, 2005
W.S. Lee, K.C. Kwon, B.K. Kim, J.H. Cho, and S.K. Young. Frequency-Shifting Analysis of Electrostatically Tunable Micro-mechanical Actuator. Journal of Modeling and Simulation of Micro-Systems 2, 83-88, 2001.
Y.C. Liang, W.Z. Lin, H.P. Lee, S.P. Lim, K.H. Lee, and H. Sun. Proper Orthogonal Decomposition and its Applications - Part II: Model Reduction for MEMS Dynamical Analysis. Journal of Sound and Vibration 256, 515-535, 2002.
ANSYS Training Manual: Introduction to ANSYS 5.7 for MEMS. 2001.
V. Rochus, D. Rixen, and J.C. Golinval. Modeling of Electro-Mechanical Coupling Problem using the Finite Element Formulation. SPIE's 10th Annual International Symposium on Smart Structures and Materials, 2002.
M. Feldman. Non-linear System Vibration Analysis Using Hilbert Transform - I. Free Vibration Analysis Method 'Freevib'. Mechanical Systems and Signal Processing 8, 119-127, 1994.
M. Feldman. Non-linear Free Vibration Identification via the Hilbert Transform. Journal of Sound and Vibration 208, 475-489, 1997.
T. Ikeda. Fundamentals of Piezoelectricity. OXFORD. 1996.
P. Holmes, J.L. Lumley, and G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge, New York, 1996.
M.F.A. Azeez and A.F. Vakakis. Proper Orthogonal Decomposition of a Class of Vibroimpact Oscillations. Journal of Sound and Vibration 240, 859-889, 2001.