[en] Plant-based biopharmaceuticals have gained a lot of interest in the past decade due to their reduced cost and relative safety compared to mammalian cell cultures. While the first plant-made recombinant proteins are now reaching the market, the production systems still need improvements to maximize their competitiveness, proteolysis being one of the main factors limiting the yields. Identifying and inhibiting in vivo endogenous proteases involved in the degradation of recombinant proteins could then lead to a significant increase in production yields.
In this study, we focused on two different production systems in Arabidopsis thaliana: rhizosecretion and cell suspensions. Extracellular proteases of both systems were used in vitro to study the conditions of target protein degradation (Bovine Serum Albumine, BSA). First, proteases from both systems degrade BSA at both acidic and neutral-to-basic pH conditions. Then, serine and metallopeptidases were shown to be the main protease classes responsible for BSA degradation by rhizosecreted proteomes or extracellular cell culture media, respectively. Finally, the biochemical tests were coupled to a bioinformatics analysis of publicly available transcriptomic data, in order to reduce the number of the proteases most likely involved in BSA degradation. Using this method, only five serine proteases and two metallopeptidases remain candidates for an amiRNA-mediated in vivo inhibition.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.