single atom transistors; solid state electronic structure; nanodevices
Abstract :
[en] Using the Burt–Foreman envelope function theory and effective mass approximation, we develop a theoretical model for an arbitrary number of interacting donor atoms embedded in silicon which reproduces the electronic energy spectrum with high computational efficiency, taking into account the effective mass anisotropy and the valley–orbit coupling. We show that the variation of the relative magnitudes of the electronic coupling between the donor atoms with respect to the valley–orbit coupling as a function of the internuclear distance leads to different kinds of spatial interference patterns of the wavefunction. We also report on the impact of the orientation of the diatomic phosphorus donor molecular ion in the crystal lattice on the ionization energy and on the energy separation between the ground state and the lowest excited state.
Disciplines :
Physics
Author, co-author :
Klymenko, Mykhailo ; Université de Liège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Remacle, Françoise ; Université de Liège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
Electronic states and wavefunctions of diatomic donor molecular ions in silicon: multi-valley envelope function theory
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Fuechsle M M, Miwa J A, Mahapatra M, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 A single-atom transistor Nature Nanotechnol. 7 242-6
Buch H, Mahapatra S, Rahman R, Morello A and Simmons M Y 2013 Spin readout and addressability of phosphorus-donor clusters in silicon Nature Commun. 4 2013
Hollenberg L C L, Dzurak A S, Wellard C, Hamilton A R, Reilly D J, Milburn G J and Clark R G 2004 Charge-based quantum computing using single donors in semiconductors Phys. Rev. B 69 113301
Mol J A, Verduijn J, Levine R D, Remacle F and Rogge S 2011 Integrated logic circuits using single-atom transistors Proc. Natl Acad. Sci. 108 13969-72
Yan Y, Mol J A, Verduijn J, Rogge S, Levine R D and Remacle F 2010 Electrically addressing a molecule-like donor pair in silicon: an atomic scale cyclable full adder logic J. Phys. Chem. C 114 20380-6
Smit G D J, Rogge S, Caro J and Klapwijk T M 2004 Stark effect in shallow impurities in Si Phys. Rev. B 70 035206
Debernardi A, Baldereschi A and Fanciulli M 2006 Computation of the Stark effect in p impurity states in silicon Phys. Rev. B 74 035202 (Pubitemid 44036733)
Calderón M J, Koiller B, Hu X and Das Sarma S 2006 Quantum control of donor electrons at the Si-SiO2 interface Phys. Rev. Lett. 96 096802 (Pubitemid 43346705)
Rahman R, Lansbergen G P, Park S H, Verduijn J, Klimeck G, Rogge S and Hollenberg L C L 2009 Orbital Stark effect and quantum confinement transition of donors in silicon Phys. Rev. B 80 165314
Carter D J, Warschkow O, Gale J D, Scappucci G, Klesse W M, Capellini G, Rohl A L, Simmons M Y, McKenzie D R and Marks N A 2013 Electronic structure of phosphorus and arsenic δ-doped germanium Phys. Rev. B 88 115203
Drumm D W, Smith J S, Per M C, Budi A, Hollenberg L C L and Russo S P 2013 Ab initio electronic properties of monolayer phosphorus nanowires in silicon Phys. Rev. Lett. 110 126802
Yamamoto T, Uda T, Yamasaki T and Ohno T 2009 First-principles supercell calculations for simulating a shallow donor state in Si Phys. Lett. A 373 3989-93
Luttinger J M and Kohn W 1955 Motion of electrons and holes in perturbed periodic fields Phys. Rev. 97 869-83
Bastard G 1991 Wave Mechanics Applied to Semiconductor Heterostructures (New York: Wiley)
Fritzsche H 1962 Effect of stress on the donor wavefunctions in germanium Phys. Rev. 125 1560-7
Pantelides S T and Sah C T 1974 Theory of localized states in semiconductors: I. New results using an old method Phys. Rev. B 10 621-37
Ning T H and Sah C T 1971 Multivalley effective-mass approximation for donor states in silicon. I. Shallow-level group-V impurities Phys. Rev. B 4 3468-81
Belyakov V A and Burdov V A 2007 Valley-orbit splitting in doped nanocrystalline silicon: kṡp calculations Phys. Rev. B 76 045335
Wellard C J and Hollenberg L C L 2005 Donor electron wavefunctions for phosphorus in silicon: beyond effective-mass theory Phys. Rev. B 72 085202 (Pubitemid 41506442)
Koiller B, Capaz R B, Hu X and Das Sarma S 2004 Shallow-donor wavefunctions and donor-pair exchange in silicon: ab initio theory and floating-phase Heitler-London approach Phys. Rev. B 70 115207
Baena A, Saraiva A L, Koiller B and Calderón M J 2012 Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO2 interface Phys. Rev. B 86 035317
Rahman R, Park S H, Klimeck G and Hollenberg L C L 2011 Stark tuning of the charge states of a two-donor molecule in silicon Nanotechnology 22 225202
Friesen M, Chutia S, Tahan C and Coppersmith S N 2007 Valley splitting theory of SiGe/Si/SiGe quantum wells Phys. Rev. B 75 115318
Friesen M and Coppersmith S N 2010 Theory of valley-orbit coupling in a Si/SiGe quantum dot Phys. Rev. B 81 115324
Burt M G 1988 An exact formulation of the envelope function method for the determination of electronic states in semiconductor microstructures Semicond. Sci. Technol. 3 739
Foreman B A 2005 First-principles envelope-function theory for lattice-matched semiconductor heterostructures Phys. Rev. B 72 165345 (Pubitemid 43022056)
Foreman B A 2007 Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures Phys. Rev. B 76 045326
Wang L-W, Franceschetti A and Zunger A 1997 Million-atom pseudopotential calculation of Γ-X mixing in GaAs/AlAs superlattices and quantum dots Phys. Rev. Lett. 78 2819-22 (Pubitemid 127655319)
Burt M G 1999 Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures J. Phys.: Condens. Matter 11 53
Resca L, Resta R and Shore H B 1982 Real-space equation for single-donor impurities and core excitons in many-valley semiconductors Phys. Rev. B 25 4031-7
Foreman B A 2006 First-principles effective-mass hamiltonian for semiconductor nanostructures in a magnetic field J. Phys.: Condens. Matter 18 1335 (Pubitemid 43121653)
Mlinar V, Tadić M, Partoens B and Peeters F M 2005 Nonsymmetrized Hamiltonian for semiconducting nanostructures in a magnetic field Phys. Rev. B 71 205305 (Pubitemid 41755418)
Saraiva A L, Calderón M J, Capaz R B, Hu X, Das Sarma S and Koiller B 2011 Intervalley coupling for interface-bound electrons in silicon: an effective mass study Phys. Rev. B 84 155320
MacMillen D B and Landman U 1984 Variational solutions of simple quantum systems subject to variable boundary conditions: II. Shallow donor impurities near semiconductor interfaces: Si, Ge Phys. Rev. B 29 4524-33
Friesen M 2005 Theory of the Stark effect for P donors in Si Phys. Rev. Lett. 94 186403 (Pubitemid 41493065)
Tyuterev V, Sjakste J and Vast N 2010 Theoretical intrinsic lifetime limit of shallow donor states in silicon Phys. Rev. B 81 245212
Blom A, Odnoblyudov M A, Yassievich I N and Chao K-A 2003 Donor states in modulation-doped Si/SiGe heterostructures Phys. Rev. B 68 165338
Aggarwal R L and Ramdas A K 1965 Optical determination of the symmetry of the ground states of group-V donors in silicon Phys. Rev. 140 A1246-53
Mulliken R S and Ermler W C 1977 Diatomic Molecules: Results of (New York: Academic)
Oosterkamp T H, Fujisawa T, van der Wiel W G, Ishibashi K, Hijman R V, Tarucha S and Kouwenhoven L P 1998 Microwave spectroscopy of a quantum-dot molecule Nature Lett. 395 873-6 (Pubitemid 28503422)
Hu X, Koiller B and Das Sarma S 2005 Charge qubits in semiconductor quantum computer architecture: Tunnel coupling and decoherence Phys. Rev. B 71 235332 (Pubitemid 41717880)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.