Reference : Zinc triggers a complex transcriptional and post-transcriptional regulation of the me...
Scientific journals : Article
Life sciences : Phytobiology (plant sciences, forestry, mycology...)
http://hdl.handle.net/2268/181578
Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives
English
Charlier, Jean_Benoit []
Polese, Catherine []
Nouet, Cécile mailto [Université de Liège > Département des sciences de la vie > Département des sciences de la vie >]
Carnol, Monique mailto [Université de Liège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne >]
Bosman, Bernard mailto [Université de Liège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne >]
Krämer, Ute []
Motte, Patrick mailto [Université de Liège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale >]
Hanikenne, Marc mailto [Université de Liège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale >]
21-Apr-2015
Journal of Experimental Botany
Oxford University Press
66
3865-78
Yes (verified by ORBi)
International
0022-0957
1460-2431
Oxford
United Kingdom
[en] In Arabidopsis thaliana, FRD3 (Ferric Chelate Reductase Defective 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of GUS and GFP reporter constructs to compare the expression profile, transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes display a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determine transcript variants which are differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation.
Researchers
http://hdl.handle.net/2268/181578
http://jxb.oxfordjournals.org/content/early/2015/04/20/jxb.erv188.full.pdf?keytype=ref&ijkey=D5hr0jLhfIHN1xL

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Charlier et al. 2015 J. Exp. Bot.-2015-Charlier-jxb_erv188.pdfPublisher postprint1.27 MBRequest copy

Additional material(s):

File Commentary Size Access
Restricted access
Charlier et al. 2015 SD.pdf553.99 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.