Carbon cycling; Radiogenic isotope geochemistry; Stable isotope geochemistry; Chemistry of fresh water; global carbon cycle; rivers; organic carbon; 14C; data set; Africa
Abstract :
[en] The role played by river networks in regional and global carbon (C) budgets is receiving increasing attention. Despite the potential of radiocarbon measurements (Δ14C) to elucidate sources and cycling of different riverine C pools, there remain large regions for which no data are available and no comprehensive attempts to synthesize the available information and examine global patterns in the 14C content of different riverine C pools. Here we present new 14C data on particulate and dissolved organic C (POC and DOC) from six river basins in tropical and subtropical Africa and compiled >1400 literature Δ14C data and ancillary parameters from rivers globally. Our analysis reveals a consistent pattern whereby POC is progressively older in systems carrying higher sediment loads, coinciding with a lower organic carbon content. At the global scale, this pattern leads to a proposed global median Δ14C signature of −203‰, corresponding to an age of ~1800 years B.P. For DOC exported to the coastal zone, we predict a modern (decadal) age (Δ14C = +22 to +46‰), and paired data sets confirm that riverine DOC is generally more recent in origin than POC—in contrast to the situation in ocean environments. Weathering regimes complicate the interpretation of 14C ages of dissolved inorganic carbon, but the available data favor the hypothesis that in most cases, more recent organic C is preferentially mineralized.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Marwick, Trent R.
Tamooh, Fredrick
Teodoru, Cristian R.
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Darchambeau, François ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Bouillon, Steven
Language :
English
Title :
The age of river-transported carbon: A global perspective
Publication date :
2015
Journal title :
Global Biogeochemical Cycles
ISSN :
0886-6236
eISSN :
1944-9224
Publisher :
Wiley-Blackwell, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abril, G., et al. (2013), Amazon River carbon dioxide outgassing fuelled by wetlands, Nature, doi:10.1038/nature12797.
Acton, P., J. Fox, E. Campbell, H. Rowe, and M. Wilkinson (2013), Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils, J. Geophys. Res. Biogeosci., 118, 1532-1545, doi:10.1002/2013JG002400.
Aiken, G. R., R. G. Spencer, R. G. Striegl, P. F. Schuster, and P. A. Raymond (2014), Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin, Global Biogeochem. Cycles, 28, 525-537, doi:10.1002/2013GB004764.
Alvarez-Cobelas, M., D. G. Angeler, S. Sánchez-Carrillo, and G. Almendros (2010), A worldwide view of organic carbon export from catchments, Biogeochemistry, 107, 275-293, doi:10.1007/s10533-010-9553-z.
Arnold, J. R., and E. C. Anderson (1957), The distribution of carbon-14 in nature, Tellus, 9(1), 28-32.
Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, J. M. Melack, S. C. Doney, S. R. Alin, R. E. Aalto, and K. Yoo (2011), Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol. Environ., 9, 53-60, doi:10.1890/100014.
Bauer, J. E., P. M. Williams, and E. R. M. Druffel (1992), 14 C activity of dissolved organic carbon fractions in the N. central Pacific and Sargasso Sea, Nature, 357, 667-670.
Bauer, J. E., E. R. M. Druffel, D.M. Wolgast, and S. Griffin (2002), Temporal and regional variability in sources and cycling of DOC and POC in the northwest Atlantic continental shelf and slope, Deep Sea Res., Part II, 49, 4387-4419.
Bauer, J. E., W.-J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkins, and P. A. G. Regnier (2013), The changing carbon cycle of the coastal ocean, Nature, 504, doi:10.1038/nature12857.
Billett, M. F., M. H. Garnett, and F. Harvey (2007), UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers, Geophys. Res. Lett., 34, L23401, doi:10.1029/2007GL031797.
Billett, M. F., K. J. Dinsmore, R. P. Smart, M. H. Garnett, J. Holden, P. Chapman, A. J. Baird, R. Grayson, and A. W. Stott (2012a), Variable source and age of different forms of carbon released from natural peatland pipes, J. Geophys. Res., 117, G02003, doi:10.1029/2011JG001807.
Billet, M. F., M. H. Garnett, K. J. Dinsmore, K. E. Dyson, F. Harvey, A. M. Thomson, S. Piirainen, and P. Kortelainen (2012b), Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland, Biogeochemistry, 111, 273-286, doi:10.1007/s10533-011-9645-4.
Bird, M. I., and P. Pousai (1997), Variations of δ 13 C in the surface soil organic carbon pool, Global Biogeochem. Cycles, 11 (3), 313-322, doi:10.1029/97GB01197.
Bird, M. I., W. S. Fyfe, D. Pinheiro-Dick, and A. R. Chivas (1992), Carbon isotope indicators of catchment vegetation in the Brazilian Amazon, Global Biogeochem. Cycles, 6(3), 293-306, doi:10.1029/92GB01652.
Bird, M. I., P. Giresse, and S. Ngos (1998), A seasonal cycle in the carbon-isotope composition of organic carbon in the Sanaga River, Cameroon, Limnol. Oceanogr., 43, 143-146.
Blair, N., and E. L. Leithold (2013), Impacts of watershed processes on exported riverine organic carbon, in Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages With Global Change, edited by T. S. Bianchi et al., pp. 174-199, Cambridge Univ. Press, New York.
Blair, N. E., and R. C. Aller (2012), The fate of terrestrial organic carbon in the marine environment, Annu. Rev. Mar. Sci., 4, 401-423.
Blair, N. E., E. L. Leithold, H. Brackley, N. Trustrum, M. Page, and L. Childress (2010), Terrestrial sources and export of particulate organic carbon in the Waipaoa sedimentary system: Problems, progress and processes, Mar. Geol., 270, 108-118, doi:10.1016/j.margeo.2009.10.016.
Bloom, A. L. (1991), Geomorphology: A Systematic Analysis of Late Cenozoic Landforms, Prentice Hall, Englewood Cliffs, N. J.
Borges, A., and G. Abril (2011), Carbon dioxide and methane dynamics in estuaries, in Treatise on Estuarine and Coastal Science, vol. 5, edited by R. W. P. Laane and J. J. Middelburg, Academic Press, Amsterdam.
Bouchez, J., O. Beyssac, V. Galy, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Moreira-Turcq (2010), Oxidation of petrogenic organic carbon in the Amazon floodplains as a source of atmospheric CO 2 , Geology, 38, 255-258, doi:10.1130/G30608.1.
Bouillon, S., et al. (2009), Distribution, origin and cycling of carbon in the Tana River (Kenya): A dry season basin-scale survey from headwaters to the delta, Biogeosciences, 6, 2475-2493.
Broecker, W. S., T.-H. Peng, G. Ostlund, and M. Stuiver (1985), The distribution of bomb radiocarbon in the ocean, J. Geophys. Res., 90(C4), 6953-6970, doi:10.1029/JC090iC04p06953.
Butman, D., P. A. Raymond, K. Butler, and G. Aiken (2012), Relationships between Δ 14 C, and the molecular quality of dissolved organic carbon in rivers draining to the coast from the conterminous United States, Global Biogeochem. Cycles, 26, GB4014, doi:10.1029/2012GB004361.
Cerling, T. E., J. M. Harris, B. J. MacFadden, M. G. Leakey, J. Quadek, V. Eisenmann, and J. R. Ehleringer (1997), Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153-158.
Clark, I., and P. Fritz (1997), Environmental Isotopes in Hydrogeology, Lewis, Boca Raton, Fla.
Clark, K. E., Y. Malhi, M. New, R. G. Hilton, A. J. West, D. R. Gröcke, C. L. Bryant, P. L. Ascough, and A. Robles Caceres (2013), New views on "old" carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes, Geochem. Geophys. Geosyst., 14, 1644-1659, doi:10.1002/ggge.20122.
Cole, J. J., et al. (2007), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 172-185, doi:10.1007/s10021-006-9013-8.
Craig, H. (1954), Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature, J. Geol., 62(2), 115-149.
Culp, R. (2013), Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia, Nucl. Instrum. Methods Phys. Res., Sect. B, 294, 257-261, doi:10.1016/j.nimb.2012.03.035.
Dai, M., Z. Yin, F. Meng, Q. Liu, and W. J. Cai (2012), Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis, Curr. Opin. Environ. Sustain., 4, 170-178, doi:10.1016/j.cosust.2012.03.003.
Druffel, E. R. M., and J. E. Bauer (2000), Radiocarbon distributions in Southern Ocean dissolved and particulate organic matter, Geophys. Res. Lett., 27(10), 1495-1498, doi:10.1029/1999GL002398.
Druffel, E. R. M., P. M. Williams, J. E. Bauer, and J. Ertel (1992), Cycling of dissolved and particulate organic matter in the open ocean, J. Geophys. Res., 97, 15,639-15,659, doi:10.1029/92JC01511.
Druffel, E. R. M., J. E. Bauer, P. M. Williams, S. Griffin, and D. Wolgast (1996), Seasonal variability of particulate organic radiocarbon in the northeast Pacific Ocean, J. Geophys. Res., 101(C9), 20,543-20,552.
Ehleringer, J. R., N. Buchmann, and L. B. Flanagan (2000), Carbon isotope ratios in belowground carbon cycle processes, Ecol. Appl., 10, 412-422.
Evans, C. D., C. Freeman, L. G. Cork, D. N. Thomas, B. Reynolds, M. F. Billett, M. H. Garnett, and D. Norris (2007), Evidence against recent climate-induced destabilisation of soil carbon from 14 C analysis of riverine dissolved organic matter, Geophys. Res. Lett., 34, L07407, doi:10.1029/2007GL029431.
Fellman, J. B., R. G. M. Spencer, P. A. Raymond, N. E. Pettit, G. Skrzypek, P. J. Hernes, and P. F. Grierson (2014), Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape, Ecology, 95, 2622-2632.
Fonselius, S., and G. Östlund (1959), Natural radiocarbon measurements on surface water from the North Atlantic and the Arctic Sea, Tellus, 11(1), 77-82.
Galy, V., and T. Eglinton (2011), Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin, Nat. Geosci., 4, 843-847, doi:10.1038/NGEO1293.
Galy, V., O. Beyssac, C. France-Lanord, and T. I. Eglinton (2008), Recycling of graphite during Himalayan erosion: A geological stabilization of carbon in the Crust, Science, 322, 943-945.
Gomez, B., W. T. Baisden, and K. M. Rogers (2010), Variable composition of particle-bound organic carbon in steepland river systems, J. Geophys. Res., 115, F04006, doi:10.1029/2010JF001713.
Goñi, M. A., M. B. Yunker, R. W. Macdonald, and T. I. Eglinton (2005), The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean, Mar. Chem., 93, 53-73, doi:10.1016/j.marchem.2004.08.001.
Goñi, M. A., J. A. Hatten, R. A. Wheatcroft, and J. C. Borgeld (2013), Particulate organic matter export by two contrasting small mountainous rivers from the Pacific Northwest U.S.A., J. Geophys. Res. Biogeosci., 118, 112-134, doi:10.1002/jgrg.20024.
Griffith, D. R., R. T. Barnes, and P. A. Raymond (2009), Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans, Environ. Sci. Technol., 43, 5647-5651.
Griffith, D. R., A. P. McNichol, L. Xu, F. A. McLaughlin, R.W.Macdonald, K. A. Brown, and T. I. Eglinton (2012), Carbon dynamics in the western Arctic Ocean: Insights from full-depth carbon isotope profiles of DIC DOC, and POC, Biogeosciences, 9, 1217-1224, doi:10.5194/bg-9-1217-2012.
Guo, L., and R. W. Macdonald (2006), Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ 13 C, Δ 14 C, δ 15 N) composition of dissolved, colloidal and particulate phases, Global Biogeochem. Cycles, 20, GB2011, doi:10.1029/2005GB002593.
Hedges, J. I., J. R. Ertel, P. D. Quay, P. M. Grootes, J. E. Richey, A. H. Devol, G. W. Farwell, F. W. Schmidt, and E. Salati (1986), Organic carbon-14 in the Amazon River system, Science, 231, 1129-1131.
Hilton, R. G., A. Galy, and N. Hovius (2008a), Riverine particulate organic carbon from an active mountain belt: Importance of landslides, Global Biogeochem. Cycles, 22, GB1017, doi:10.1029/2006GB002905.
Hilton, R. G., A. Galy, N. Hovius, M. C. Chen, M. J. Horng, and H. Chen (2008b), Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains, Nat. Geosci., 1, 759-762, doi:10.1038/ngeo333.
Hilton, R. G., A. Galy, N. Hovius, M. J. Horng, and H. Chen (2010), The isotopic composition of particulate organic carbon in mountain rivers of Taiwan, Geochim. Cosmochim. Acta, 74, 3164-3181, doi:10.1016/j.gca.2010.03.004.
Hood, E., J. Fellman, R. G. M. Spencer, P. J. Hernes, R. Edwards, D. D'Amore, and D. Scott (2009), Glaciers as a source of ancient and labile organic matter to the marine environment, Nature, 462, 1044-1047.
Hossler, K., and J. E. Bauer (2012), Estimation of riverine carbon and organic matter source contributions using time-based isotope mixing models, J. Geophys. Res., 117, G03035, doi:10.1029/2012JG001988.
Howarth, R. W., J. R. Fruci, and D. Sherman (1991), Inputs of sediment and carbon to an estuarine ecosystem: Influence of land use, Ecol. Appl., 1(1), 27-39.
Hwang, J., E. R. M. Druffel, and T. I. Eglinton (2010), Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles, Global Biogeochem. Cycles, 24, GB4016, doi:10.1029/2010GB003802.
Ittekkot, V. (1988), Global trends in the nature of organic matter in river suspensions, Nature, 332, 436-438.
Kao, S. J., and K. K. Liu (1996), Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan, Limnol. Oceanogr., 41, 1749-1757.
Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer (2001), Exchanges of Atmospheric CO 2 and 13 CO 2 With the Terrestrial Biosphere and Oceans From 1978 to 2000. I. Global Aspects, pp. 1-28, Scripps Institution of Oceanography, San Diego, Calif. [Available at http://escholarship.org/uc/item/09v319r9.]
Keil, R. G., L. M. Mayer, P. D. Quay, J. E. Richey, and J. I. Hedges (1997), Loss of organic matter from riverine particles in deltas, Geochim. Cosmochim. Acta, 61(7), 1507-1511.
Kithiia, S. M., and G. S. Ongwenyi (1997), Some problems of water quality degradation in the Nairobi River sub-basins in Kenya, IAHS Publ., 243, 121-127.
Kohn, M. J. (2010), Carbon isotope compositions of terrestrial C 3 plants as indicators of (paleo) ecology and (paleo) climate, Proc. Natl. Acad. Sci. U.S.A., 107, 19,691-19,695.
Komada, T., E. R. M. Druffel, and S. E. Trumbore (2004), Oceanic export of relict carbon by small mountainous rivers, Geophys. Res. Lett., 31, L07504, doi:10.1029/2004GL019512.
Leithold, E. L., N. E. Blair, and D. W. Perkey (2006), Geomorphological controls on the age of particulate organic carbon from small mountainous and upland rivers, Global Biogeochem. Cycles, 20, GB3022, doi:10.1029/2005GB002677.
Longworth, B. E., S. T. Petsch, P. A. Raymond, and J. E. Bauer (2007), Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system, Geochim. Cosmochim. Acta, 71, 4233-4250, doi:10.1016/j.gca.2007.06.056.
Lu, Y. H., J. E. Bauer, E. A. Canuel, R. M. Chambers, Y. Yamashita, R. Jaffé, and A. Barrett (2014), Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams, Biogeochemistry, 119, 275-292, doi:10.1007/s10533-014-9965-2.
Ludwig, W., J. L. Probst, and S. Kempe (1996), Predicting the oceanic input of organic carbon by continental erosion, Global Biogeochem. Cycles, 10, 23-41, doi:10.1029/95GB02925.
Lyons, W. B., C. A. Nezat, A. E. Carey, and D. M. Hicks (2002), Organic carbon fluxes to the ocean from high-standing islands, Geology, 30(5), 443-446.
Mariotti, A., F. Gadel, and P. Giresse (1991), Carbon isotope composition and geochemistry of particulate organic matter in the Congo River (Central Africa): Application to the study of Quaternary sediments off the mouth of the river, Chem. Geol. Isot. Geosci., 86, 345-357.
Marwick, T. R., A. V. Borges, K. Van Acker, F. Darchambeau, and S. Bouillon (2014a), Disproportionate contribution of riparian inputs to organic carbon pools in freshwater systems, Ecosystems, doi:10.1007/s10021-014-9772-6.
Marwick, T. R., F. Tamooh, B. Ogwoka, C. Teodoru, A. V. Borges, F. Darchambeau, and S. Bouillon (2014b), Dynamic seasonal nitrogen cycling in response to anthropogenic N-loading in a tropical catchment, Athi-Galana-Sabaki River Kenya, Biogeosciences, 11, 443-460, doi:10.5194/bg-11-443-2014.
Massielo, C. A., and E. R. M. Druffel (2001), Carbon isotope geochemistry of the Santa Clara River, Global Biogeochem. Cycles, 15(2), 407-416, doi:10.1029/2000GB001290.
Mayorga, E., A. K. Aufdenkampe, C. A. Masiello, A. V. Krusche, J. I. Hedges, P. D. Quay, J. E. Richey, and T. A. Brown (2005), Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers, Nature, 436, 538-541, doi:10.1038/nature03880.
Mayorga, E., S. P. Seitzinger, J. A. Harrison, E. Dumont, A. H. W. Beusen, A. F. Bouwman, B. M. Fekete, C. Kroeze, and G. Van Drecht (2010), Global nutrient export from WaterSheds 2 (NEWS 2): Model development and implementation, Environ. Modell. Software, 25, 837-853, doi:10.1016/j.envsoft.2010.01.007.
McCallister, S. L., and P. A. del Giorgio (2012), Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams, Proc. Natl. Acad. Sci. U.S.A., 109, 16,963-16,968, doi:10.1073/pnas.1207305109.
McConnell, W. J. (2002), Misconstrued land use in Vohibazaha: Participatory planning in the periphery of Madagascar's Mantadia National Park, Land Use Pol., 19, 217-230.
McNichol, A. P., and L. I. Aluwihare (2007), The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC), Chem. Rev., 107, 443-466.
Megens, L., J. van der Plicht, and J. W. de Leeuw (2001), Temporal variations in 13 C and 14 C concentrations in particulate organic matter from the southern North Sea, Geochim. Cosmochim. Acta, 65(17), 2899-2911.
Meybeck, M. (1982), Carbon, nitrogen, and phosphorus transport by world rivers, Am. J. Sci., 282, 401-450.
Milliman, J. D., and J. P. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 100(5), 525-544.
Moore, S., C. D. Evans, S. E. Page, M. H. Garnett, T. G. Jones, C. Freeman, A. Hooijer, A. J. Wiltshire, S. H. Limin, and V. Gauci (2013), Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes, Nature, 493, 660-663, doi:10.1038/nature11818.
Moyer, R. P., J. E. Bauer, and A. G. Grottoli (2013), Carbon isotope biogeochemistry of tropical small mountainous river, estuarine and coastal systems of Puerto Rico, Biogeochemistry, 112, 589-612, doi:10.1007/s10533-012-9751-y.
Nadeau, M.-J., P. M. Grootes, M. Schliecher, P. Hasselberg, A. Rieck, and M. Bitterling (1998), Sample throughput and data quality at the Leibniz-Labor AMS facility, Radiocarbon, 40(1), 239-245.
Neff, J. C., J. C. Finlay, S. A. Zimov, S. P. Davydov, J. J. Carrasco, E. A. G. Schuur, and A. I. Davydova (2006), Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams, Geophys. Res. Lett., 33, L23401, doi:10.1029/2006GL028222.
Newbold, J. D., P. J. Mulholland, J. W. Elwood, and R. V. O'Neill (1982), Organic carbon spiralling in stream ecosystems, Oikos, 38, 266-272.
Oades, J. M. (1988), The retention of organic matter in soils, Biogeochemistry, 5, 35-70.
Oosterom, A. P. (1988), The geomorphology of southeast Kenya, PhD thesis, Agricultural Univ., Wageningen, Netherlands.
Rafter, T. A. (1955), C14-variations in nature and the effect on radiocarbon dating, N. Z. J. Dairy. Sci. Tech., 37, 26-38.
Raymond, P. A., and J. E. Bauer (2001a), DOC cycling in a temperate estuary: A mass balance approach using natural Δ 14 C and δ 13 C isotopes, Limnol. Oceanogr., 46(3), 655-667.
Raymond, P. A., and J. E. Bauer (2001b), Use of 14 C and 13 C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis, Org. Geochem., 32, 469-485.
Raymond, P. A., and J. E. Bauer (2001c), Riverine export of aged terrestrial organic matter to the North Atlantic Ocean, Nature, 409, 497-499.
Raymond, P. A., J. E. Bauer, N. F. Caraco, J. J. Cole, B. Longworth, and S. T. Petsch (2004), Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers, Mar. Chem., 92, 353-366, doi:10.1016/j.marchem.2004.06.036.
Raymond, P. A., J. W. McClelland, R. M. Holmes, A. V. Zhulidov, K. Mull, B. J. Peterson, R. G. Striegl, G. R. Aiken, and T. Y. Gurtovaya (2007), Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers, Global Biogeochem. Cycles, 21, GB4011, doi:10.1029/2007GB002934.
Raymond, P. A., et al. (2013), Global carbon dioxide emissions from inland waters, Nature, 503, 355-359, doi:10.1038/nature12760.
Rosenheim, B. E., K. M. Roe, B. J. Roberts, A. S. Kolker, M. A. Allison, and K. H. Johannesson (2013), River discharge influences on particulate organic carbon age structure in the Mississippi/Atchafalaya River System, Global Biogeochem. Cycles, 27, 154-166, doi:10.1002/gbc.20018.
Schiff, S. L., R. Aravena, S. E. Trumbore, M. J. Hinton, R. Elgood, and P. J. Dillon (1997), Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: Clues from 13 C and 14 C, Biogeochemistry, 36, 43-65.
Sickman, J. O., C. L. DiGiorgio, M. L. Davisson, D. M. Lucero, and B. Bergamaschi (2010), Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin California, Biogeochemistry, 99, 79-96, doi:10.1007/s10533-009-9391-z.
Six, J., R. T. Conant, E. A. Paul, and K. Paustian (2002), Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant Soil, 241, 155-176.
Smith, J. C., A. Galy, N. Hovius, A. M. Tye, J. M. Turowski, and P. Schleppi (2013), Runoff-driven export of particulate organic carbon from soil in temperate forested uplands, Earth Planet. Sci. Lett., 365, 198-208, doi:10.1016/j.epsl.2013.01.027.
Sodikoff, G. (1996), Plunder, Fire and Deliverance: A Study of Forest Conservation, Rice Farming and Eco-Capitalism in Madagascar, Clark University Program for International Development and Social Change, Worcester, Mass.
Spencer, R. G., et al. (2012), An initial investigation into the organic matter biogeochemistry of the Congo River, Geochim. Cosmochim. Acta, 84, 614-627, doi:10.1016/j.gca.2012.01.013.
Still, C. J., and R. L. Powell (2010), Continental-scale distributions of vegetation stable carbon isotope ratios, in Isoscapes, edited by J. B. West et al., pp. 179-193, Springer, Netherlands.
Still, C. J., J. A. Berry, G. J. Collatz, and R. S. DeFries (2003), Global distribution of C 3 and C 4 vegetation: Carbon cycle implications, Global Biogeochem. Cycles, 17 (1), doi:10.1029/2001GB001807.
Stubbins, A., et al. (2007), Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nat. Geosci., 5, 198-201, doi:10.1038/NGEO1403.
Stuiver, M., and H. A. Polach (1977), Discussion: Reporting of C-14 data, Radiocarbon, 19, 355-363.
Tamooh, F., K. Van den Meersche, F. Meysman, T. R. Marwick, A. V. Borges, R. Merckx, F. Dehairs, S. Schmidt, J. Nyunja, and S. Bouillon (2012), Distribution and origin of suspended sediments and organic carbon pools in the Tana River Basin Kenya, Biogeosciences, 9, 2905-2920, doi:10.5194/bg-9-2905-2012.
Tittel, J., O. Büttner, K. Freier, A. Heiser, R. Sudbrack, and G. Ollesch (2013), The age of terrestrial carbon export and rainfall intensity in a temperate river headwater system, Biogeochemistry, 115, 53-63, doi:10.1007/s10533-013-9896-3.
Torello-Raventos, M., et al. (2013), On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions, Plant Ecol. Divers., 6, 101-137, doi:10.1080/17550874.2012.762812.
Torn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks (1997), Mineral control of soil organic carbon storage and turnover, Nature, 389, 170-173.
Van Strydonck, M., and K. Van der Borg (1990-1991), The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels, Bulletin Koninklijk Instituut voor Kunstpatrimonium, 23, 228-234.
Vihermaa, L. E., S. Waldron, M. H. Garnett, and J. Newton (2014), Old carbon contributes to aquatic emissions of carbon dioxide in the Amazon, Biogeosci. Discuss, 11, 1773-1800, doi:10.5194/bgd-11-1773-2014.
Vonk, J. E., et al. (2013), High biolability of ancient permafrost carbon upon thaw, Geophys. Res. Lett., 40, 1-5, doi:10.1002/grl.50348.
Wang, X., H. Ma, R. Li, Z. Song, and J. Wu (2012), Seasonal fluxes and source variation of organic carbon transported by two major Chinese rivers: The Yellow River and Changjiang (Yangtze) River, Global Biogeochem. Cycles, 26, GB2025, doi:10.1029/2011GB004130.
Wang, X. B., J. Chen, Y. Li, Q. Wen, M. Sun, C. Li, and G. Hu (1994), Volcanic activity revealed by isotope systematic of gases from hydrothermal springs in Tengchong, China, in Noble Gas Geochemistry and Cosmochemistry, edited by J. Matsuda, pp. 293-304, TERRAPUB, Tokyo.
Whiticar, M. J. (1996), Stable isotope geochemistry of coals, humic kerogens and related natural gases, Int. J. Coal Geol., 32, 191-215.
Williams, P. M., and E. R. M. Druffel (1987), 14 C in dissolved organic carbon in the central N. Pacific Ocean, Nature, 330, 246-248.
Woodward, F. I., M. R. Lomas, and C. K. Kelly (2004), Global climate and the distribution of plant biomes, Philos. Trans. R. Soc. London, Ser. B, 359, 1465-1476, doi:10.1098/rstb.2004.1525.
Wynn, J. G., and M. I. Bird (2007), C 4 -derived soil organic carbon decomposes faster than its C 3 counterpart in mixed C 3 /C 4 soils, Global Change Biol., 13, 2206-2217, doi:10.1111/j.1365-2486.2007.01435.x.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.