Copyright (2015) AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Review of Scientific Instruments 86, 025107 (2015) and may be found at http://dx.doi.org/10.1063/1.4907903.
All documents in ORBi are protected by a user license.
[en] We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 Am2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Disciplines :
Electrical & electronics engineering
Author, co-author :
Egan, Raphael ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Wera, Laurent ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Vanderheyden, Benoît ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
Dennis, Anthony; University of Cambridge > Department of Engineering > Bulk Superconductivity
Shi, Yunhua; University of Cambridge > Department of Engineering > Bulk Superconductivity
Cardwell, David A.; University of Cambridge > Department of Engineering > Bulk Superconductivity
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors
Publication date :
13 February 2015
Journal title :
Review of Scientific Instruments
ISSN :
0034-6748
eISSN :
1089-7623
Publisher :
American Institute of Physics, New York, United States - New York
J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y.-H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom, and D. A. Cardwell, Supercond. Sci. Technol. 27, 082001 (2014). 10.1088/0953-2048/27/8/082001
M. Tomita and M. Murakami, Nature 421, 517 (2003). 10.1038/nature01350
D. Zhou, M. Izumi, M. Miki, B. Felder, T. Ida, and M. Kitano, Supercond. Sci. Technol. 25, 103001 (2012). 10.1088/0953-2048/25/10/103001
F. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, and P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012). 10.1088/0953-2048/25/1/014007
G. Krabbes, G. Fuchs, W.-R. Canders, H. May, and R. Palka, High Temperature Superconductor Bulk Materials: Fundamentals, Processing, Properties Control, Application Aspects (John Wiley & Sons, 2006).
S. Haindl, F. Hengstberger, H. W. Weber, S. Meslin, J. Noudem, and X. Chaud, Supercond. Sci. Technol. 19, 108 (2006). 10.1088/0953-2048/19/1/018
I. Chen, J. Liu, R. Weinstein, and K. Lau, J. Appl. Phys. 72, 1013 (1992). 10.1063/1.351826
T. Higuchi, N. Sakai, M. Murakami, and M. Hashimoto, IEEE Trans. Appl. Supercond. 5, 1818 (1995). 10.1109/77.402933
S. Haindl, Supercond. Sci. Technol. 18, 1483 (2005). 10.1088/0953-2048/18/11/013
P. Laurent, J. F. Fagnard, B. Vanderheyden, N. H. Babu, D. A. Cardwell, M. Ausloos, and P. Vanderbemden, Meas. Sci. Technol. 19, 085705 (2008). 10.1088/0957-0233/19/8/085705
M. Raven and M. Salim, Meas. Sci. Technol. 12, 744 (2001). 10.1088/0957-0233/12/6/314
P. Vanderbemden, Cryogenics 38, 839 (1998). 10.1016/S0011-2275(98)00063-0
M. Philippe, J.-F. Fagnard, S. Kirsch, Z. Xu, A. Dennis, Y.-H. Shi, D. Cardwell, B. Vanderheyden, and P. Vanderbemden, Phys. C 502, 20 (2014). 10.1016/j.physc.2014.04.025
A. Campbell, in Magnetic Susceptibility of Superconductors and Other Spin Systems, edited by R. Hein, T. Francavilla, and D. Liebenberg (Springer, US, 1991), pp. 129-155. 10.1007/978-1-4899-2379-06
S. Foner, Rev. Sci. Instrum. 30, 548 (1959). 10.1063/1.1716679
G. J. Bowden, J. Phys. E: Sci. Instrum. 5, 1115 (1972). 10.1088/0022-3735/5/11/025
J. K. Krause, IEEE Trans. Magn. 28, 3066 (1992). 10.1109/20.179717
J. Krause, V. Wang, and B. Dodrill, " Magnetic property characterization system employing a single sensing coil arrangement to measure both ac susceptibility and dc magnetization," U.S. patent 5,506,500 (9 April 1996), http://www.google.com/patents/US5506500.
D. Dufeu, E. Eyraud, and P. Lethuillier, Rev. Sci. Instrum. 71, 458 (2000). 10.1063/1.1150223
Lake Shore Cryotronics, Inc., 2014, http://www.lakeshore.com/.
C. L. Foiles and T. W. McDaniel, Rev. Sci. Instrum. 45, 756 (1974). 10.1063/1.1686729
E. E. Bragg and M. S. Seehra, J. Phys. E: Sci. Instrum. 9, 216 (1976). 10.1088/0022-3735/9/3/020
C. N. Guy, J. Phys. E: Sci. Instrum. 9, 790 (1976). 10.1088/0022-3735/9/9/027
A. Zieba and S. Foner, Rev. Sci. Instrum. 53, 1344 (1982). 10.1063/1.1137182
J. P. C. Bernards, Rev. Sci. Instrum. 64, 1918 (1993). 10.1063/1.1143977
A. Khoder and M. Couach, Cryogenics 31, 763 (1991). 10.1016/0011-2275(91)90241-N
D.-X. Chen, V. Skumryev, and B. Bozzo, Rev. Sci. Instrum. 82, 045112 (2011). 10.1063/1.3581224
B. H. Blott and G. J. Daniell, Meas. Sci. Technol. 4, 462 (1993). 10.1088/0957-0233/4/4/004
P. Stamenov and J. M. D. Coey, Rev. Sci. Instrum. 77, 015106 (2006). 10.1063/1.2149190
U. Ausserlechner, P. Kasperkovitz, and W. Steiner, Meas. Sci. Technol. 9, 989 (1998). 10.1088/0957-0233/9/6/017
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), Vol. 3.
D. J. Griffiths and R. College, Introduction to Electrodynamics (Prentice hall, Upper Saddle River, NJ, 1999), Vol. 3.
C. P. Bean, Rev. Mod. Phys. 36, 31 (1964). 10.1103/RevModPhys.36.31
E. Durand, Magnetostatique (Masson et Cie, Bd St-Germain, Paris (VIe), 1968), Vol. 120 (in French).
N. H. Babu, K. Iida, Y. Shi, and D. Cardwell, Phys. C 445-448, 286 (2006). 10.1016/j.physc.2006.04.067
P. Vanderbemden, Z. Hong, T. A. Coombs, S. Denis, M. Ausloos, J. Schwartz, I. B. Rutel, N. H. Babu, D. A. Cardwell, and A. M. Campbell, Phys. Rev. B 75, 174515 (2007). 10.1103/PhysRevB.75.174515
D. Cardwell, M. Murakami, M. Zeisberger, W. Gawalek, R. Gonzalez-Arrabal, M. Eisterer, H. Weber, G. Fuchs, G. Krabbes, A. Leenders, H. Freyhardt, X. Chaud, R. Tournier, and N. H. Babu, Phys. C 412-414 (1), 623 (2004). 10.1016/j.physc.2004.01.082
C. Dewhurst, W. Lo, Y. Shi, and D. Cardwell, Mater. Sci. Eng., B 53, 169 (1998). 10.1016/S0921-5107(98)80009-3