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We report the design and construction of a flux extraction device to measure the DC magnetic
moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed
by integrating the electromotive force generated by two coils wound in series-opposition that move
around the sample. We show that an octupole expansion of the magnetic vector potential can be used
conveniently to treat near-field effects for this geometrical configuration. The resulting expansion
is tested for the case of a large, permanently magnetized, type-II superconducting sample. The
dimensions of the sensing coils are determined in such a way that the measurement is influenced
by the dipole magnetic moment of the sample and not by moments of higher order, within user-
determined upper bounds. The device, which is able to measure magnetic moments in excess of
1 A m2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a
known current and (ii) by comparison with the results of numerical calculations obtained previously
using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement
of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen
temperature (77 K). C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907903]

I. INTRODUCTION

Large, single grain bulk high-temperature superconduc-
tors (HTSs) fabricated by the so-called top seeded melt growth
(TSMG) processing technique have the greatest field-trapping
ability of any known material.1,2 As a result, these materials are
attracting increasing interest for many applications in which
they can act effectively as strong quasi-permanent magnets,
including rotating machines3 and stable magnetic levitation
devices.4 Bulk superconducting magnets consist typically of
cylinders of 10–50 mm in diameter and 10–20 mm in height.5

Associated measurement and characterization methods by
both destructive and non-destructive techniques have devel-
oped naturally as the ability to melt process these materials
has evolved. Of these, the most popular methods have tended
to focus on local measurements of the flux density by scanning
a miniature Hall probe above the top surface of the sam-
ple, either after full magnetization of the sample by a field
cooling technique6–8 or by using a small permanent magnet
moved simultaneously with the Hall probe (the so-called
“magnetoscan” technique).9 Such measurement techniques
have provided valuable information about current distribution
and characteristics in the vicinity of the surface of the sample,
although they are significantly less sensitive to the inner, bulk
critical current density.

Bespoke AC susceptometers can be used to investigate the
volumetric properties of large superconducting samples,10–12

although the penetration depth of the largest AC fields (0.1 T)
at temperatures of interest (e.g., 77 K or lower) in high quality

materials is typically small compared to the diameter of the
sample.10 One method of measuring the volume DC magnetic
properties of these large, bulk superconductors involves wind-
ing a coil tightly around the sample and then measuring the flux
in the coil directly.13 Unfortunately, however, this method only
provides information about the average magnetic flux density
in the sample,14 and the determination of the magnetic moment
requires numerical modeling based on assumptions concern-
ing isotropy, homogeneity, and constitution.13 In order to avoid
such limitations and complications, an appropriate magnetom-
eter should be employed if the DC magnetic moment of the
sample is to be determined independently of any other property
of the sample.

It should be emphasized within this context that well es-
tablished magnetometers, including vibrating sample/coil,15,16

flux extraction,17–19 and SQUID devices, measure typically the
magnetic moment of samples that are much less than 1 cm3 in
volume,20,21 which is up to two orders of magnitude smaller
than the typical dimensions of state of the art melt processed
HTS samples. Moreover, since the design and calibration of
these measurement techniques rely fundamentally on a dipole
hypothesis for the sample, they are generally accurate only for
samples that are much smaller than the radius of the sensing
coils or for uniformly magnetized samples of a specific, well
defined geometry.15–19,22–24

Various approaches have been proposed over the past two
decades to enable meaningful magnetization measurements to
be performed on samples of size comparable with that of the
sensing coils. The first of these is associated with vibrating
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sample magnetometry (VSM) and consists of designing
a coil arrangement to flatten and optimize its sensitivity
function selectively at the location of the sample.16,25,26

However, fundamental to this technique is the assumption
of a homogeneous sample magnetization and an increased
complexity of the coil arrangement, which impedes its
practical application for large samples. Simpler alternatives
have been also considered, including (i) the modification of
a calibration constant by assuming a specific sample shape
and a homogeneous magnetization17,27,28 and (ii) the use
of deconvolution techniques to determine the magnetization
distribution of extended samples along their major geometrical
axis.29,30 Unfortunately, these methods are not applicable to
the measurement of bulk superconducting magnets because
(i) the assumption of a homogeneous magnetization state does
not hold and (ii) they cannot be described as extended samples
given that their radius can be comparable with their height.

In this paper, we propose a device designed to measure
the magnetic moment of magnetized bulk samples of a few
cm3 in volume, including bulk HTS, melt processed disks. A
flux extraction technique is preferred to vibrating techniques
primarily for mechanical simplicity. The system is designed by
making use of a multipole expansion, as proposed elsewhere.31

The present approach, however, differs by making use of
a tensor expansion rather than vector spherical harmonics
and has the advantage of making a connection between the
contributions associated with high order magnetic moments,
on one hand, and the tensor contraction between sample-
related and coil-related tensors, on the other. As a result,
the technique reported here addresses directly the problem
of sample misalignment, which would otherwise require
complex calculations and also encompass previous specific
results, but in a very general way. Although the present work
focuses on cylindrical samples, the fundamental technique
can be extended easily to other sample shapes or sample
magnetization profiles.

A generic, schematic illustration of the experimental
arrangement and the associated notation is illustrated in Fig. 1.
The system is based on the use of pick-up coils wound in series
opposition that move vertically from one side of the sample
to the other. The center of the sample is constrained to lie on
the symmetry axis of the sensing coils, which are composed
of one layer of copper wire and are identical in construction
but wound in series opposition. A relative motion between the
sample and the sensing coils gives rise to a flux change in the
latter and thus to a voltage signal via Faraday’s law, which
may then be detected. The magnetic moment can then be deter-
mined by direct integration of the electromotive force (e.m.f.)
signal generated. The contributions to this integral arising from
the dipole, quadrupole, and octupole components of the flux
generated by an arbitrary sample are calculated. These results
will allow conclusions about the dimensions of the sensing
coils and the integration bounds to be drawn in order to ensure
the accuracy of the measurement. An appropriate validation
technique is described in order to support the results of the
measurement system constructed using this approach. The
measurement of magnetic relaxation by flux creep in bulk HTS
samples is presented, finally, to demonstrate the sensitivity of
the device.

FIG. 1. Schematic illustration of the experimental arrangement: the sample
(top, in blue) induces a flux change in the sensing coils (bottom, in orange)
when they move along the e3-axis. In this figure, (e1, e2, e3) (respectively,
(e1′, e2′, e3′)) is an orthonormal vector basis whose orientation along e3 (re-
spectively, e3′) lies along the symmetry axis of the sensing coils (respectively,
the sample). They are separated in the figure in order to illustrate the general
developments described in Sec. II. In practice, however, the alignment of the
sample requires e3 = e3′.

II. THEORETICAL BASIS: MULTIPOLE EXPANSION

Integration of the voltage across the sensing coils of a
flux extraction magnetometer yields, by Faraday’s law, the
difference in magnetic flux in the sensing coils between initial
and final values. The magnetic flux, therefore, is of prime
interest in the measurement of magnetic moment and will be
evaluated here using a multipole expansion in order to take into
account possible near-field effects in a general way. B (r) and
A (r) denote the flux density and vector potential, at position r.
Using Stokes’ theorem, the magnetic flux induced in a single
coil of surface S (normal n) and contour C is given by

S
B · n dS =


S
(∇ × A) · n dS =


C
A · dl.

For a given position zc of the sensing coils relative to the
sample (see Fig. 1), the total magnetic flux Φ is given by

Φ (zc) = n
 zc−ℓ

zc−ℓ−L

 2π

0
A (Rer + ze3) · Reθ dθ dz (1)

− n
 zc+ℓ+L

zc+ℓ

 2π

0
A (Rer + ze3) · Reθ dθ dz,

where n is the number of turns per unit length.
The vector potential depends on the sample, its size, and

its shape according to32,33

A (r) = µ0

4π


V

J (r′)
|r − r′|d

3r′, (2)
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where J (r′) is the current density in the sample volume V
(using the Coulomb gauge). The effective current density32

JM = ∇′ ×M can be used in (2) in the case of a distribution
of microscopic magnetization M (r′) within the sample. The
magnetic field around the sample may thus deviate from pure
dipole behavior and this relation accounts for these effects. A
multipole expansion31,32 of (2) up to and including the octupole
terms is used in order to take such a deviation into account in
a general way. Using index notations, this yields

Ai (r) = µ0

4π


V

Ji (r′)

ζ0 (r) + r ′j[ζ1 (r)] j

+
r ′jr
′
k

2!
[ζ2 (r)] jk +

r ′jr
′
k
r ′
l

3!
[ζ3 (r)] jkl + · · ·


d3r′

= Am
i (r) + Ad

i (r) + Aq
i (r) + Ao

i (r) + · · ·. (3)

In the present work, the superscripts m, d, q, and o represent
the monopole, dipole, quadrupole, and octupole contributions,
respectively. Note that the monopole contribution Am can be
shown easily to be strictly zero, since ∇′ · J = 0. The ζn (r)
functions are defined by

ζ0 (r) = 1
|r| , (4a)

[ζ1 (r)] j = − ∂

∂r j
ζ0 =

r j

|r|3 , (4b)

[ζ2 (r)] jk = − ∂

∂rk
[ζ1] j =

3r jrk
|r|5 −

δ jk

|r|3 , (4c)

[ζ3 (r)] jkl = − ∂

∂rl
[ζ2] jk

=
15r jrkrl

|r|7 −
3
�
δ jkrl + δ jlrk + δklr j

�

|r|5 . (4d)

Total flux (1) can then be expressed in the form of its
component parts

Φ (zc) = Φd (zc) + Φq (zc) + Φo (zc) + · · ·, (5)

where the first three terms are calculated explicitly in the
Appendix. The dipole, quadrupole, and octupole contributions
are then given by

Φ
d (zc) = n

µ0

2
m · e3 Fd (zc) , (6a)

Φ
q (zc) = n

µ0

4R
Q : e3e3 Fq (zc) , (6b)

Φ
o (zc) = n

3µ0

32R2 O
... (e3 (I − 5e3e3)) Fo (zc) , (6c)

where
... (respectively, :) holds for contraction products between

third-order (respectively, second-order) tensors, i.e., T
...V

= Ti jkVi jk if T and V are both third-order tensors. In these
expressions, m, Q, and O hold for the dipole, quadrupole, and
octupole magnetic moments of the sample, respectively, which
are defined as

m =
1
2


V

r′ × J d3r′ , (7a)

Q =

V

(r′ × J) r′d3r′ , (7b)

O =

V

(r′ × J) r′r′d3r′ , (7c)

and the dimensionless multipole profile functions are given by

Fd (z) =

ξ/
�
R2 + ξ2�1/2

ξ=z−ℓ; z+ℓ

ξ=z−ℓ−L; z+ℓ+L
, (8a)

Fq (z) =

R3/

�
R2 + ξ2�3/2

ξ=z−ℓ; z+ℓ

ξ=z−ℓ−L; z+ℓ+L
, (8b)

Fo (z) =

ξR4/

�
R2 + ξ2�5/2

ξ=z−ℓ; z+ℓ

ξ=z−ℓ−L; z+ℓ+L
, (8c)

where [ f (ξ)]ξ=a; b
ξ=c; d = f (a) + f (b) − f (c) − f (d).

The above results give the total magnetic flux across the
sensing coils in a general way. Indeed, the size of the sample
may be comparable to that of the sensing coils, as illustrated
in Sec. III. Moreover, there is no hypothesis about the physical
phenomenon responsible for the magnetic properties of the
sample, whose origin may be microscopic (as in conventional
magnetic materials) or macroscopic (as is the case in type-II
superconducting permanent magnets).

III. APPROPRIATENESS OF THE APPROACH:
A PARTICULAR CASE

In Sec. II, we calculated explicitly the first three terms
of the total magnetic flux across the sensing coils, i.e., the
dipole, quadrupole, and octupole contributions. In order to
assess the quality of such a truncated multipole expansion,
we now consider the theoretical case of a cylindrical HTS
sample whose critical current density Jc is assumed to be field-
independent. Isotropy and homogeneity are also assumed for
this theoretical case. According to Bean’s model,34 the current
density within the sample may be described by

J (r′) =



Jceθ′ if r′ · er ′ ≤ a and |r′ · e3′| ≤ H/2,
0 else,

(9)

where a and H are the radius and height of the sample (see
Fig. 1), if the sample is fully penetrated. When the symmetry
axes of the sample and the sensing coils coincide (i.e., e3′ = e3),
an analytical derivation of the voltage signal over the sensing
coils is possible from the knowledge of the mutual inductance
between two coaxial circular turns,35 which yields

e.m.f. (t) = −n
dzc

dt
Jc


q (η) η=zc+ℓ; zc−ℓ

η=zc+ℓ+L; zc−ℓ−L
, (10)

where

q (η) =
 a

0

 η+H/2

η−H/2

√
Rr

(
2
k
− k

)
K (k) − 2E (k)

k


dζdr

and where k2 = 4r R/
(
ζ2 + (R + r)2) . The latter relations are,

however, of little practical use in the design of the sensing coils,
due to the presence of the cumbersome elliptic integrals K and
E. The multipole expansion is therefore a better alternative if
it proves appropriate.

Based on current density distribution (9) and the defini-
tions of magnetic moments (7), we have

m =
πa3H Jc

3
e3′ , (11a)
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FIG. 2. Theoretical e.m.f. signal for an ideal HTS bulk sample and sens-
ing coils moving at a constant speed żc= 0.5 ms−1: comparison between
analytical expression (10) and dipole or octupole truncations (12) with the
parameters given in Table I. Whereas the dipole truncation (red dashed
curve) fails at approximating well the analytical solution (blue triangles), the
octupole expansion (green solid curve) constitutes a good fit, as shown by the
insets.

Q = 0 , (11b)

O =
πa3H Jc

5


a2e3′ (I − e3′e3′) + 5H2

9
e3′e3′e3′

− 5H2

36
δa′b′ea′ (eb′e3′ + e3′eb′)


. (11c)

Therefore, octupole expansion (5) can be applied readily to
approximate the voltage signal according to

e.m.f. (t) ≃ −dzc

dt
d

dzc

�
Φ

d + Φo� (12)

(note that only the first term remains in the case of a dipole
truncation). A comparison between analytical approach (10)
and the dipole or octupole approximation is shown graphically
in Fig. 2 using numerical parameters given in Table I. In this
particular case, the radius of the sample (a = 2.7 cm) is chosen
specifically to be comparable to that of the sensing coils (R
= 4 cm). This illustrates deliberately a case of near-field effects
(small R/a ratio) in order to enlighten the possible defects of
the dipole approximation. The triangle symbols in Fig. 2 show
the analytical time-dependence of the measured voltage across
the sensing coils when they move at a constant speed. The
dashed (respectively, plain) line illustrates the same voltage
signal determined according to the method described in Sec. II,
but truncated after the dipole (respectively, octupole) term (as
shown in the insets to the figure). The octupole correction im-
proves significantly the approximation, making the difference
with the analytical solution almost negligible. In this example,

TABLE I. Parameters (see Fig. 1) associated with the results illustrated in
Fig. 2.

m a H R L ℓ N = nL

1 A m2 2.7 cm 2 cm 4 cm 14 cm 2.5 cm 1200

the octupole correction reduces the dipole maximum relative
error of about 7.3% to less than 0.5%.

A similar, comparative analysis was conducted for the
particular case of a ferromagnetic cylindrical sample. If the
magnetization state of this sample is considered homogeneous,
i.e., M = Me3′, then it can be substituted by an effective surface
current density33 Js = Meθ′ in Eqs. (2) and (7). The conclu-
sions obtained for an ideal HTS bulk sample hold perfectly in
such a case. Consequently, it is reasonable to use the octupole
expansion in order to design the measurement system.

IV. DESIGN OF THE MEASUREMENT DEVICE

The value of the magnetic moment is deduced from a
difference in magnetic flux, i.e., by integrating the e.m.f.
induced across the sensing coils. Let zi and zf denote the initial
and final positions of the sensing coils (along e3) associated
with the bounds of integration. Faraday’s law then yields
Φ (zi) − Φ (zf) for the integration and the measurement of the
magnetic moment (projected on e3) is deduced from (6a) via

Φ (zi) − Φ (zf)
nµ0 (Fd (zi) − Fd (zf)) /2 . (13)

However, this formulation is exact only for a pure dipole
sample: in practice, higher order magnetic moments come into
play and are responsible for errors in the measurement.

In this section, we use the general results from Sec. II to
determine the dimensions (L, ℓ, and R) of the sensing coils as
well as the integration bounds zi and zf, with the objective be-
ing to interpret the difference in magnetic flux predominantly
in terms of the dipole moment of the sample and only weakly
dependent on higher order components. Using the octupole
truncation, the measured flux difference reads

Φ (zi) − Φ (zf) = �
Φ

d (z) �zi
zf
+
�
Φ

q (z) �zi
zf
+
�
Φ

o (z) �zi
zf
.

Profile functions (8) exhibit a remarkable symmetry
pattern.31 Indeed, the function associated with the contribution
of kth order moment is dk

duk

(√
1 + u2

)
, where u = z/R. Con-

sequently, Fd and Fo are odd functions whereas Fq is even.
The quadrupole contribution to the flux difference, therefore,
vanishes completely if we choose zi = −zf = ẑ. In such a case,
the flux difference becomes

Φ (zi) − Φ (zf) = 2Φd (ẑ) + 2Φo (ẑ) .
The relative error ε associated with the value of the magnetic
moment deduced from this measurement is thus given at first
order by

ε =
Φo (ẑ)
Φd (ẑ) =

3
16R2

O
... (e3 (I − 5e3e3))

m · e3

Fo (ẑ; ℓ,L,R)
Fd (ẑ; ℓ,L,R) (14)

based on Eqs. (6) and (8). According to the latter relation, it
is tempting to set ẑ to a root value of Fo in order to reject the
relative error to a still higher order (note that the hexadecapole
contribution is also rejected given that it is associated with
an even profile function). However, such a reasoning is of
little practical use because it would not tolerate any defect in
the sensing coils, however small. As discussed below, ẑ has
been set to maximizeΦd (ẑ), corresponding to the positions of
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the sensing coils associated with zero-crossing voltage signal
(in a pure dipole approach) which is consistent with previous
studies.17,18 According to Eq. (8), the ẑ-value depends on ℓ,
L, and R; it cannot be expressed analytically but is easily
determined numerically.

The approach using such bounds of integration is now
to determine the dimensions ℓ, L, and R in order to ensure
that ε does not exceed some limiting value, for example, 10−3.
Based on dimensional arguments and on the specific case of the
ideal HTS sample discussed previously (Sec. III), the scaling
relation

O
... (e3 (I − 5e3e3))

m · e3
∼ a2 (15)

may be used and holds true for samples whose aspect ratio a/H
is comparable to 1. In this case, the relative error becomes

ε ≃ 3a2

16R2

Fo (ẑ; ℓ,L,R)
Fd (ẑ; ℓ,L,R) ≃

1
5

a2

R2 G
(

L
R
,

L
ℓ

)
, (16)

where the dimensionless ratio G = Fo/Fd depends on the
geometrical dimensions ℓ, L, and R, only through L/R and
L/ℓ, due to the Buckingham π theorem (recall that ẑ also
depends on ℓ, L, and R).

The ratio G can be analyzed readily using (8) and the
numerical determination of ẑ. Its dependence on L/R is illus-
trated in Fig. 3 for some fixed values of L/ℓ chosen over a
wide range. This shows that |G| < 0.1 as long as L/R > 3.5,
regardless of the value of L/ℓ. In such a case, we have

ε <
1

50
a2

R2

and the relative error may be bounded by 0.1% subject to the
conditions

L
R

> 3.5 and
R
a

> 4.5. (17)

The spacing 2ℓ between the sensing coils still remains
undetermined and may be fixed by other considerations such
as the total available length for positioning the sensing coils

FIG. 3. The absolute value of the dimensionless ratio G as a function of L/R
for various values of L/ℓ. The inset shows that |G | < 0.1 when L/R > 3.5
for a wide range of L/ℓ ratios.

and their displacement. Note also that ℓ is related logically
to the coupling between the two sensing coils. In general, the
smaller the value ℓ, the stronger the coupling and hence the
lower the measured flux difference (and, hence, the sensitivity
of the system).

The center of the sample was assumed to be located
perfectly on the symmetry axis of the sensing coils throughout
this investigation. However, the multipole expansion may
again be useful in order to assess the influence of a small
displacement ρ of the sample. Such a situation is actually
equivalent to a fictitious sample located perfectly, but whose
magnetic moments are modified slightly by substituting r′ + ρ
for r′ in relations (7). It is well known that this does not change
the value of the magnetic moment m. Nevertheless, it results in
the addition of ((m · ρ) I +mρ) to quadrupole moment (7b).
Similarly, the i j k-component of the octupole moment then
becomes

Oi jk +Qi jρk +Qik ρ j + (ρ ·m) �δi jρk + δkiρ j

�
+Wi jk,

where Wi jk = εi pqρp


V Jqr ′jr

′
k

d3r′. The use of these modifi-
cations to the results from Sec. II allows the effects of a small
misplacement of the sample to be assessed easily, if required.

V. EXPERIMENTAL SETUP, VALIDATION,
AND APPLICATION

The dimensions of the sensing coils may be deduced from
the maximum sample radius based on results (17) of Sec. IV.
The magnetometer device designed in this work will be used to
characterize bulk, superconducting magnets of external diam-
eter less than 1.7 cm. The dimensions

L = 14 cm and R = 4 cm (18)

ensure the efficient measurement of the dipole magnetic
moment and the relative contribution of the higher order
terms will be less than 0.1%. Sensing coils satisfying those
criteria were therefore constructed with one layer of copper
wire (100 µm in diameter). The spacing 2ℓ is equal to 5 cm
and, importantly, hosts the connections to the data acquisition
system.

The creation of two coils of such dimensions with perfect
similarity is, in itself, a challenge. In consequence, the number
of turns in each sensing coil is not strictly equal but differs
from their mean value (N) of 1223 turns by ±6 units (±δN).
Therefore, the symmetry of the integration bounds zi = −zf
= ẑ no longer ensures the quadrupole contribution to the flux
difference to be zero. Indeed, taking δN into account and
following the reasoning of Sec. II, it can be shown that the
quadrupole contribution becomes

δN
L

µ0

2R
Q : e3e3 Fq (ẑ) . (19)

Nevertheless, this does not invalidate the design of the
measurement system suggested in Sec. IV since Fq (ẑ) = 0
because ẑ maximizes Fd (z) and Fq (z) = R d

dz Fd (z). This
would not be the case if ẑ was defined as Fo (ẑ) = 0 and
thus justifies the choice for ẑ, i.e., Fq (ẑ) = 0.

In the present design, the sample (possibly cooled at
cryogenic temperature) is fixed and the sensing coils move
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vertically. An electric motor allows the displacement of the
sensing coils over a total length of 75 cm at a speed of
about 0.5 m/s. Their position along the guiding vertical
rail is measured by means of two optical sensors. The first
detects a reference position of the coils, while the second
measures the time-dependent angular displacement related
to the shaft of the motor. A computer running LabView®

is used to manage a data acquisition card (NI 6251 DAQ)
and to ensure the synchronous acquisition of all signals. The
computer then proceeds to data processing in order to compute
the time integral of the e.m.f. signal between the well-defined
integration bounds ±ẑ. These bounds are located accurately
due to the digital signals produced by the optical sensors.
The voltage offset is measured during the first 200 ms of
the measurement process, during which the coils remain at
rest. The sample is contained within a polyvinyl chloride
(PVC) holder that can be filled with liquid nitrogen. A typical
measurement of both the e.m.f. across the sensing coils and
their vertical displacement zc against time is shown in Fig. 4.
The sample investigated is a neodymium permanent magnet
of 15 mm in diameter and 8 mm in height. The magnetic
moment of this sample determined with the system developed
here is 1.412 ± 0.002 A m2.

The measurement procedure relies on the analytical
calculations from Sec. II and is expected to be valid within
0.1% relative error providing conditions (17) are fulfilled
(the uncertainties due to voltage and position measurements
are much smaller than this bound). In theory, therefore, the
measurement system requires no calibration procedure under
those conditions. Nevertheless, a calibration experiment was
performed to assess its accuracy.

Calibration procedures usually make use of standard
samples17,28 made of Ni, MnF2, Pd, or, more recently, Dy2O3.
They rely on the well-known magnetic susceptibility of such
materials and their associated well-defined magnetization in
an externally applied magnetic field. These cannot be used
here, however, since no source of external field is used in the
system due to its relatively large dimensions.

FIG. 4. Top: measured time-dependence of the e.m.f. across the sensing
coils. The vertical black lines define the integration bounds. Bottom: concur-
rent displacement of the sensing coils as a function of time (moving upward).

An alternative way of producing a well-defined magnetic
moments is to inject a DC current into a coil to simulate the
role of a sample. Therefore, a cylindrical copper coil made of
N = 57 turns in one layer was manufactured for this purpose,
with the maximum dimensions permitted for the size of the
sample holder, i.e., 20 mm in diameter (D) and 18 mm in
height. Since D slightly exceeds 17 mm, the maximum relative
uncertainty becomes 0.13% rather than 0.1%. By injecting
an increasing DC current I into the coil aligned along e3,
reference magnetic moments m = N πD2/4 Ie3 are produced
and their uncertainty can be determined from the uncertainties
in the current (measured with a Fluke 87 V®) and on the
coil diameter. A comparison between these reference mag-
netic moments and the magnetic moments measured by the
system is illustrated in Fig. 5 for DC currents ranging from
0.5 A to 7.5 A, i.e., magnetic moments ranging from 0.009
to 0.131 A m2. It can be seen that the experimental points lie
on the expected straight line within the bounds of uncertainty.
This result gives evidence of the correct operation of the sys-
tem.

In order to assess its sensitivity, the system was finally
tested on the measurement of the magnetic relaxation (or “flux
creep”) into a bulk HTS puck. A cylindrical bulk YBaCuO
sample was synthesized by TSMG36 with a diameter of
16.5 mm and a height of 6.3 mm. The sample was magnetized
by field-cooled process using a 1 T Halbach array, and its
magnetic moment measured over time for a period of more
than 1 h, as illustrated by the blue circles in Fig. 6. This shows
the system is sensitive to the observed tiny time-dependent
variations of the trapped magnetic moment (less than 1%
decrease over more than 1 h).

Some time is required between the end of the magnetizing
process and the first measurement given that a field source
is not integrated in the current system. Flux creep occurs
during this interval so that the first measurement does not
represent the maximum trapped magnetic moment. However,
it is possible to estimate this value of magnetic moment using
a power law time dependence of the following form:

FIG. 5. Magnetic moment measured against the reference magnetic mo-
ments produced by an air-cored coil driven by a DC current. The expected
behavior (straight line of unity slope) is shown in red; the experimental points
and their relative uncertainty bars are shown in blue.
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FIG. 6. Measured time-dependence of the magnetic moment of a bulk, large
grain YBaCuO HTS sample magnetized permanently by field-cooled process
in a 1 T Halbach array. The blue circles are the measured values and the red
solid line is a fit to relation (20).

m (t) = m0


1 +

t
t0

 β
(20)

(β < 0) usually observed in flux creep phenomena.37,38

The convincing agreement of the measured data with the
(red) straight line in the semi-logarithmic plot in Fig. 6 sup-
ports this observation. According to (20), m0 may be a conve-
nient estimation of the maximum trapped magnetic moment,
i.e., at the end of the magnetization process. A fit of the
experimental data shown in Fig. 6 gives directly m0 = 0.431
± 0.025 A m2. This value is in very good agreement with a
previous estimation of 0.432 A m2, which was deduced from
the field-dependent current density distribution obtained by
means of numerical methods from the measurement of the
e.m.f. induced in a coil wound tightly around the cylindrical
bulk superconductor.13

Note that several magnetic measurements on large grain
YBaCuO materials13,38 and especially those obtained on small
specimens extracted from a large sample 39 showed both axial
and radial variations in the critical current density Jc. There-
fore, the quadrupole contribution may not be identically zero
in this case, unlike that for the simplistic approach addressed
in Sec. III. Nevertheless, the good agreement observed above
suggests that such a quadrupole effect does not impede the
measurement of the magnetic dipole moment, as expected
from previous discussion (see Sec. IV and Eq. (19)).

VI. CONCLUSION

An experimental device for the direct and non-destructive
measurement of the DC magnetic moment of relatively large
samples (up to 17 mm in diameter) has been designed, con-
structed, and calibrated. The device is based on two pick-
up coils wound in series opposition that move linearly over
a distance of 75 cm, while the sample, which is magnetized
using an external magnetic field, is maintained at constant
temperature (which may be cryogenic).

A multipole expansion of the magnetic vector potential
has been developed, assessed, and used to establish well-
defined conditions concerning the dimensions of the sensing
coils for the measurement of the dipole magnetic moment of
large samples. The criteria derived are linked inherently to an
upper bound on the contribution of moments of higher order to
the measured signal. The sensing coils were designed success-
fully to limit the measurement error to be less than 0.1%. The
system has been demonstrated to perform as expected and
extends the measurement limits of current maximum magnetic
moment of commercial cryogenic magnetic measurement sys-
tems to greater than 1 A m2 (1000 emu). The successful opera-
tion of the system is supported by a calibration experiment us-
ing reference magnetic moments produced by an air-cored coil
(dummy control sample) driven by DC currents. The system
has enabled measurements, for the first time, of the remanent
volume DC magnetic moment of a whole large bulk YBaCuO
sample at liquid nitrogen temperature with a sensitivity that
is adequate for probing very small variations of the magnetic
moment, such as those occurring during flux-creep.
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APPENDIX: MULTIPOLE FLUX CONTRIBUTIONS

The main steps of the calculations yielding results (6) are
detailed in this Appendix. Let φ (z) be the elementary flux in
a single turn of the sensing coils, which is at the position z
relative to the sample. From (3) and (4b), the elementary dipole
flux contribution satisfies

φd (z) = µ0

4π


V

Jr′d3r′ :
 2π

0
Reθ

Rer + zez
(R2 + z2)3/2 dθ. (A1)

From symmetry and given that eθ = e3 × er = eaεa3beb · er ,
where εi jk is the permutation symbol, the second integral of
this expression can be written as

R2εa3b

(R2 + z2)3/2 eaeb ·
 2π

0
erer dθ =

πR2εa3b

(R2 + z2)3/2 eaeb

since  2π

0
ererdθ = π (e1e1 + e2e2) .

Therefore, (A1) can be rewritten as

φd (z) = µ0

4
R2

(R2 + z2)3/2ε3ba


V

Jar ′b d3r′

=
µ0

2
R2

(R2 + z2)3/2

(
1
2


V

r′ × J d3r′
)
· e3

which yields (6a) when integrated with respect to z as required
by (1). A similar reasoning can be applied to the elemen-
tary flux of higher order magnetic moments without further
obstacle (although the calculations become more involved).
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For example, the quadrupole elementary flux involves the following integral calculation: 2π

0
Reθζ2 (Rer + ze3) dθ =

 2π

0
Reθ

3 (Rer + ze3) (Rer + ze3)
(R2 + z2)5/2 dθ =

3R2z

(R2 + z2)5/2

 2π

0
(eθere3 + eθe3er) dθ

=
3R2z

(R2 + z2)5/2 eaεa3beb ·
 2π

0
(erere3 + ere3er) dθ =

3π R2z

(R2 + z2)5/2ε3baea (ebe3 + e3eb)

which yields

φq (z) = µ0

8π
3πR2z

(R2 + z2)5/2ε3ba


V

2Jar ′3r
′
b d3r′ =

3µ0

4
R2z

(R2 + z2)5/2

(
V

(r′ × J) r′d3r′
)

: e3e3

the integration of which with respect to z as written in (1) leads to (6b).
Similarly, the octupole elementary flux requires the calculation of the rather cumbersome integral 2π

0
Reθζ3 (Rer + ze3) dθ =

15R4

(R2 + z2)7/2

 2π

0
eθerererdθ +

15R2z2

(R2 + z2)7/2

 2π

0
eθe3e3er + eθe3ere3 + eθere3e3dθ

− 3R2

(R2 + z2)5/2

 2π

0
eθδab (eaeber + eaereb + ereaeb) dθ

=
3πR2 �R2 − 4z2�

4(R2 + z2)7/2 ε3dc (δab − 5δa3δb3) (eceaebed + eceaedeb + ecedeaeb)

since
 2π

0 ererererdθ = π
4 (δab − δa3δb3) (δcd − δc3δd3) (ecedeaeb + eceaedeb + eceaebed). Consequently, the octupole elemen-

tary flux is given by

φo (z) = µ0

24π
3πR2 �R2 − 4z2�

4(R2 + z2)7/2 ε3dc (δab − 5δa3δb3)

V

3Jcr ′ar ′br ′d d3r′

=
3µ0

32
R2 �R2 − 4z2�

(R2 + z2)7/2

(
V

(r′ × J) r′r′d3r′
)
... (e3 (I − 5e3e3)) ,

where I is the identity second-order tensor. The integration of this result with respect to z between the bounds of (1) yields (6c).
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