[en] Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.
Disciplines :
Physics
Author, co-author :
Lagubeau, Guillaume ; Université de Liège - ULiège > Département de physique > Physique statistique
Rescaglio, Antonella; Universidad de santiago de chile > fisica
Melo, Francesco; Universidad de santiago de chile > fisica
Language :
English
Title :
Armoring a droplet: Soft jamming of a dense granular interface
Publication date :
03 September 2014
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, College Park, United States - Maryland
Volume :
90
Pages :
030201
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FONDECYT - Chile Fondo Nacional de Desarrollo Científico y Tecnológico
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
B. P. Binks and T. S. Horozov, Colloidal Particles at Liquid Interfaces (Cambridge University Press, Cambridge, UK, 2006).
A. B. Subramaniam, M. Abkarian, L. Mahadevan, and H. A. Stone, Langmuir 22, 10204 (2006). LANGD5 0743-7463 10.1021/la061475s
B. P. Binks and T. S. Horozov, Angew. Chem. Int. Ed. Engl. 44, 3722 (2005). 1433-7851 10.1002/anie.200462470
T. S. Horozov, Curr. Opin. Colloid Interface Sci. 13, 134 (2008). COCSFL 1359-0294 10.1016/j.cocis.2007.11.009
S. U. Pickering, J. Chem. Soc., Trans. 91, 2001 (1907). 0368-1645 10.1039/ct9079102001
M. Abkarian, A. B. Subramaniam, S.-H. Kim, R. J. Larsen, S.-M. Yang, and H. A. Stone, Phys. Rev. Lett. 99, 188301 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.188301
P. Aussillous and D. Quéré, Nature (London) 411, 924 (2001). NATUAS 0028-0836 10.1038/35082026
G. McHale and M. Newton, Soft Matter 7, 5473 (2011). 1744-683X 10.1039/c1sm05066d
E. Bormashenko, Soft Matter 8, 11018 (2012). 1744-683X 10.1039/c2sm26189h
P. Cicuta and D. Vella, Phys. Rev. Lett. 102, 138302 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.102.138302
M. Berhanu and A. Kudrolli, Phys. Rev. Lett. 105, 098002 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.098002
C.-C. Kuo and M. Dennin, Phys. Rev. E 87, 030201 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.87.030201
C. Planchette, A. L. Biance, and E. Lorenceau, Europhys. Lett. 97, 14003 (2012). EULEEJ 0295-5075 10.1209/0295-5075/97/14003
A. Varshney, A. Sane, S. Ghosh, and S. Bhattacharya, Phys. Rev. E 86, 031402 (2012). PLEEE8 1539-3755 10.1103/PhysRevE.86.031402
C. Monteux, J. Kirkwood, H. Xu, E. Jung, and G. G. Fuller, Phys. Chem. Chem. Phys. 9, 6344 (2007). PPCPFQ 1463-9076 10.1039/b708962g
E. Bormashenko, A. Musina, G. Whymana, Z. Barkayb, A. Starostinc, V. Valtsiferc, and V. Strelnikov, Colloids Surf., A 425, 15 (2013). CPEAEH 0927-7757 10.1016/j.colsurfa.2013.02.043
M. Dandan and H. Y. Erbil, Langmuir 25, 8362 (2009). LANGD5 0743-7463 10.1021/la900729d
B. Laborie, F. Lachaussee, E. Lorenceau, and F. Rouyer, Soft Matter 9, 4822 (2013). 1744-683X 10.1039/c3sm50164g
L. Mahadevan and Y. Pomeau, Phys. Fluids 11, 2449 (1999). PHFLE6 1070-6631 10.1063/1.870107
M. Abkarian, S. Protière, J. M. Aristoff, and H. A. Stone, Nat. Commun. 4, 1895 (2013). 2041-1723 10.1038/ncomms2869
J. P. Hartog, Advanced Strength of Materials (Dover, New York, 1987).
F. A. Gilabert, J.-N. Roux, and A. Castellanos, Phys. Rev. E 75, 011303 (2007). PLEEE8 1539-3755 10.1103/PhysRevE.75.011303
C. Song, P. Wang, and H. A. Makse, Nature (London) 453, 629 (2008). NATUAS 0028-0836 10.1038/nature06981
N. Eshtiaghi and K. P. Hapgood, Powder Technol. 223, 65 (2012). POTEBX 0032-5910 10.1016/j.powtec.2011.05.007
A. J. Liu and S. R. Nagel, Annu. Rev. Condens. Matter Phys. 1, 347 (2010). 1947-5454 10.1146/annurev-conmatphys-070909-104045
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.