Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?
Boullis, Antoine; Francis, Frédéric; Verheggen, François
climate change; CO2; ozone; chemical ecology; natural enemy
Résumé :
[en] Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions between phytophagous insect pests, their host plants, and their natural enemies is likely to be impacted. Several reports have indicated that modifications to plants caused by elevated carbon dioxide and ozone concentrations might indirectly affect insect herbivores, with community-level modifications to this group potentially having an indirect influence on higher trophic levels. The vulnerability of agricultural insect pests toward their natural enemies under elevated greenhouse gases concentrations has been frequently reported, but conflicting results have been obtained. This literature review shows that the higher levels of carbon dioxide, as predicted for the coming century, do not enhance the abundance or efficiency of natural enemies to locate hosts or prey in most published studies. Increased ozone levels lead to modifications in herbivore-induced volatile organic compounds (VOCs) released by damaged plants, which may impact the attractiveness of these herbivores to the third trophic level. Furthermore, other oxidative gases (such as SO2 and NO2) tend to reduce the abundance of natural enemies. The impact of changes in atmospheric gas emissions on plant–insect and insect–insect chemical communication has been under-documented, despite the significance of these mechanisms in tritrophic interactions. We conclude by suggesting some further prospects on this topic of research yet to be investigated. [fr] Chez les insectes, les comportements de recherche de nourriture ou de partenaires reposent sur leur capacité à percevoir des signaux chimiques présents dans l’environnement : c’est le cas chez les insectes parasitoïdes et prédateurs qui utilisent les kairomones émises par leurs hôtes/proies pour les localiser. Dans un contexte de changements climatiques, et plus précisément de modifications des concentrations atmosphériques en gaz à effet de serre, la communication chimique entre insectes phytophages, plantes hôtes et ennemis naturels pourrait être impactée. En effet, plusieurs études ont démontré que des modifications chez les plantes dues à l’augmentation des concentrations en dioxyde de carbone et ozone pouvaient impacter indirectement les insectes phytophages, ainsi que les niveaux trophiques supérieurs. Plusieurs études se sont intéressées à l’effet des changements gazeux sur la vulnérabilité des insectes phytophages vis-à-vis de leurs ennemis naturels. Leurs résultats sont dans l’ensemble variables. Cette synthèse bibliographique indique que l’augmentation de la concentration en CO2 n’augmente généralement pas l’efficacité ou l’abondance des ennemis naturels. L’augmentation d’O3 va induire des modifications dans la production de métabolites secondaires produits par les plantes, ce qui pourrait avoir un impact sur l’attractivité des ennemis naturels. L’augmentation des concentrations d’autres gaz (SO2 et NO2) réduiraient l’abondance des ennemis naturels. En outre, l’impact des changements gazeux sur les communications chimiques plantes-insectes et insectes-insectes sont sous-documentés, malgré la prévalence de ces mécanismes au sein des interactions tri-trophiques. Les recherches futures devraient s’intéresser à ces mécanismes régissant l’efficacité des ennemis naturels, tout en tenant compte de l’intégralité du réseau trophique.
Boullis, Antoine ; Université de Liège - ULiège > Sciences agronomiques > Entomologie fonctionnelle et évolutive
Francis, Frédéric ; Université de Liège - ULiège > Sciences agronomiques > Entomologie fonctionnelle et évolutive
Verheggen, François ; Université de Liège - ULiège > Sciences agronomiques > Entomologie fonctionnelle et évolutive
Langue du document :
Anglais
Titre :
Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?
Ashmore, M. R. 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28: 949-964.
Awmack, C. S., C. M. Woodcock, and R. Harrington. 1997. Climate change may increase vulnerability of aphids to natural enemies. Ecol. Entomol. 22: 366-368.
Awmack, C. S., R. Harrington, and R. L. Lindroth. 2004. Aphid individual performance may not predict population responses to elevated CO2 or O3. Glob. Change Biol. 10: 1414-1423.
Bezemer, T. M., and T. H. Jones. 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82: 212-222.
Bezemer, T. M., T. H. Jones, and K. J. Knight. 1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116: 128-135.
Bidart-Bouzat, M. G., and A. Imeh-Nathaniel. 2008. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50: 1339-1354.
Blande, J. D., J. A. Pickett, and G.M. Poppy. 2004. Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J. Chem. Ecol. 33: 1781-1795.
Bruce, T. J., L. J. Wadhams, and C. M. Woodcock. 2005. Insect host location: a volatile situation. Trends Plant Sci. 10: 269-274.
Butler, C. D., N. E., Beckage, and J. T., Trumble. 2009. Effects of terrestrial pollutants on insect parasitoids. Environ. Toxicol. Chem. 28: 1111-1119.
Ceulemans, R., I. Janssens, and M. Jach. 1999. Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Ann. Bot. 84: 577-590.
Chen, F., F. Ge, and M. N. Parajulee. 2005. Impact of elevated CO2 on tri-trophic interactions of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environ. Entomol. 34: 37-46.
Chen, F.,G.Wu, M. N. Parajulee, and F. Ge. 2007. Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Sci. Technol. 17: 313-324.
Coviella, C. E., and J. T. Trumble. 1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv. Biol. 13: 700-712.
Dicke, M. 2000. Chemical ecology of host-plant selection by herbivorous arthropods: amultitrophic perspective. Biochem. Syst. Ecol. 28: 601-617.
Fonseca,M.G., D.R. Santos, andA.M. Auad. 2014. Impact of different carbon dioxide concentrations in the olfactory response of Sipha flava (Hemiptera: Aphididae) and its Predators. J. Insect Behav. 27: 722-728.
Francis, F., S. Vandermoten, F. J. Verheggen, G. Lognay, and E. Haubruge. 2005a. Is the (E)-b-farnesene only volatile terpenoid in aphids? J. Appl. Entomol. 129: 6-11.
Francis, F., T. Martin, G. Lognay, and E. Haubruge. 2005b. Role of (E)-beta-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Eur. J. Entomol. 102: 431-436.
Gao, F., S.-R. Zhu, Y. C. Sun, L. Du, M. N. Parajulee, L. Kang, and F. Ge. 2008. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environ. Entomol. 37: 29-37.
Gao,F., F. Chen, and F. Ge. 2010. Elevated CO2 lessens predation of Chrysopa sinica on Aphis gossypii. Entomol. Exp. Appl. 135: 135-140.
Gate, I., S.McNeill, andM. Ashmore. 1995. Effects of air pollution on the searching behaviour of an insect parasitoid. Water Air Soil Pollut. 85: 1425-1430.
Guerenstein, P. G., and J. G. Hildebrand. 2008. Roles and effects of environmental carbon dioxide in insect life. Ann. Rev. Entomol. 53: 161-178.
Hartley, S. E., C. G. Jones, G. C. Couper, and T. H. Jones. 2000. Biosynthesis of plant phenolic compounds in elevated atmospheric CO2.Glob. Change Biol. 6: 497-506.
Harvey, J., S. van Nouhuys, and A. Biere. 2005. Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. J. Chem. Ecol. 31: 287-302.
Heliövaara, K., and R. Väisänen. 1986. Parasitization in Petrova resinella (Lepidoptera, Tortricidae) galls in relation to industrial air pollutants. Silva Fenn. 20: 233-236.
Hentley,W. T., R. S. Hails, S. N. Johnson, T. H. Jones, and A. J. Vanbergen. 2014a. Top-down control by Harmonia axyridis mitigates the impact of elevated atmospheric CO2 on a plant-aphid interaction. Agric. For. Entomol. 16: 350-358.
Hentley, W. T., A. J. Vanbergen, R. S. Hails, T. H. Jones, and S. N. Johnson. 2014b. Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals. J. Chem. Ecol. 40: 1104-1114.
Holopainen, J.K. 2002. Aphid response to elevated ozone and CO2. Entomol. Exp. Appl. 104: 137-142.
Holopainen, J. K., S. Himanen, andG. Poppy. 2013. Climate change and its effects on the chemical ecology of insect parasitoids, 168-190. In E. Wajnberg and S. Colazza (eds.), Chemical Ecology of Insect Parasitoids. JohnWiley and Sons, Oxford, United Kingdom.
Holton, M. K., R. L. Lindroth, and E. V. Nordheim. 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137: 233-244.
(IPCC) Intergovernmental Panel on Climate Change. 2013. Climate Change 2013-The physical science Basis. Contribution of working group I to the fifth assessment report of the IPCC. Cambridge University press, Cambridge, United Kingdom and New York, NY.
Jackson, G. E. 1995. The effect of ozone, nitrogen dioxide or nitric oxide fumigation of cereals on the rose grain aphid Metopolophium dirhodum. Agric. Ecosyst. Environ. 54: 187-194.
Jones, C. G. and J. S. Coleman. 1988. Plant stress and insect behavior: Cottonwood, ozone and the feeding and oviposition preference of a beetle. Oecologia 76: 51-56.
Karnosky,D. F., J.M. Skelly, K. E. Percy, and A.H. Chappelka. 2007. Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ. Pollut. 147: 489-506.
Klaiber, J., A. J. Najar-Rodriguez, E. Dialer, and S. Dorn. 2013. Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biol. Control 66: 49-55.
Lindroth, R. L. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J. Chem. Ecol. 36: 2-21.
Meleux, F., F. Solmon, and F. Giorgi. 2007. Increase in summer European ozone amounts due to climate change. Atmos. Environ. 41: 7577-7587.
Mondor, E. B., M. N. Tremblay, C. S. Awmack, and R. L. Lindroth. 2004. Divergent pheromone-mediated insect behavior under global atmospheric change. Glob. Change Biol. 10: 1820-1824.
Percy,K.E., C. S. Awmack,R.L. Lindroth, M. E. Kubiske, B. J. Kopper, J. G. Isebrands, K. S. Pregitzer, G. R. Hendrey, R.E.Dickson,D. R. Zak,et al.2002. Altered performance of forest pests under atmospheres enriched by CO2 andO3.Nature 420: 403-408.
Pickett, J. A., and R. T. Glinwood. 2007. Chemical ecology, 235-260. In H.F. Van Emden and R. Harrington (eds.), Aphids as crop pests. CABI,Wallingford, United Kingdom.
Pinto,D.M., J. M. Blande,R.Nykänen, W.-X.Dong, A.-M. Nerg, and J. K. Holopainen. 2007a. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J. Chem. Ecol. 33: 683-694.
Pinto, D. M., A.M. Nerg, and J. K. Holopainen. 2007b. The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J. Chem. Ecol. 33: 2218-2228.
Pinto,D.M., S. J. Himanen, A. Nisinen, A.M. Nerg, and J. K. Holopainen. 2008. Host location behavior of Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) in ambient and moderately elevated ozone in field conditions. Environ. Pollut. 156: 227-231.
Pinto,D.M., J.M.Blande, S.R. Souza, A.M.Nerg, andJ. K. Holopainen. 2010. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J. Chem. Ecol. 36: 22-34.
Roth, S. K., and R. L. Lindroth. 1995. Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect parasitoid interactions.Glob. Change Biol. 1: 173-182.
Roth S. K., C. Knorr and R. L. Lindroth. 1997. Dietary phenolics affect performance of the gypsy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 26: 668-671.
Stacey,D. A., andM.D. Fellowes. 2002. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Glob. Change Biol. 8: 668-678.
Stiling, P., and T. Cornelissen. 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? a field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13: 1823-1842.
Stiling, P., A. M. Rossi, B. Hungate, et al. 1999. Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecol. Appl. 9: 240-244.
Sun, Y. C., J. Su, and F. Ge. 2010. Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. Agric. Ecosyst. Environ. 135: 140-147.
Sun, Y. C., L. Feng, F. Gao, and F. Ge. 2011. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18: 451-461.
Vandermoten, S., M. C. Mescher, F. Francis, E. Haubruge, and F. J. Verheggen. 2012. Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem.Mol. 42: 155-163.
Verheggen, F.,Q. Fagel, S.Heuskin,G. Lognay, F. Francis, and E. Haubruge. 2007. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. J. Chem. Ecol. 33: 2148-2155.
Verheggen, F., L. Arnaud, S. Bartam, M. Gohy, and E. Haubruge. 2008. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. J. Chem. Ecol. 34: 301-307.
Vet, L., andM. Dicke. 1992. Ecology of infochemical by natural enemies in a tritrophic contex. Annu. Rev. Entomol. 37: 141-172
Villemant, C. 1981.Influence de la pollution atmosphérique sur les populations d'aphides du pin sylvestre en forêt de Roumare (Seine-Maritime). Environ. Pollut. A 24: 245-262.
Vuorinen, T., A.-M. Nerg, A. M. Ibrahim, G. V. Reddy, and J. K. Holopainen. 2004. Emission of Plutella xylostellainduced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol. 135: 1984-1992.
Walker, M., andT. H. Jones. 2001. Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant-insect herbivore-natural enemy systems.Oikos 93: 177-187.
Wang, G., X. X.Wang, Y. C. Sun, and F. Ge. 2014. Impacts of elevated CO2 on Bemisia tabaci infesting Bt cotton and its parasitoid Encarsia formosa. Entomol. Exp. Appl. 152: 228-237.
Webster, B. 2012. The role of olfaction in aphid host location. Physiol. Entomol. 37: 10-18.
Webster, B., T. Bruce, J. A. Pickett, and J. Hardie. 2008. Olfactory recognition of host plants in the absence of hostspecific volatile compounds. Commun. Integr. Biol., 1: 167-169.
Whittaker, J. B. 1999. Impacts and responses at population level of herbivorous insects to elevated CO2.Eur. J. Entomol. 96: 149-156.
Yin, J., Y.C. Sun, G. Wu,M.N. Parajulee, and F. Ge. 2009. No effects of elevated CO2 on the population relationship between cotton bollworm, Helicoverpa armigera Hü bner (Lepidoptera: Noctuidae), and its parasitoid, Microplitis mediator Haliday (Hymenoptera: Braconidae). Agric. Ecosyst. Environ. 132: 267-275.
Yin, J., Y. C. Sun, and F. Ge. 2014. Reduced plant nutrition under elevated CO2 depresses the immunocompetence of cotton bollworm against its endoparasite. Sci. Rep. 4: 4538.
Zvereva, E. L., and M. V. Kozlov. 2000. Effects of air pollution on natural enemies of the leaf beetle Melasoma lapponica. J. Appl. Ecol. 37: 298-308.
Zvereva, E. L., and M. V. Kozlov. 2006. Top-down effects on population dynamics of Eriocrania miners (Lepidoptera) under pollution impact: does an enemy-free space exist? Oikos 115: 413-426.
Zvereva, E. L., and M. V. Kozlov. 2010. Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ. Sci. Pollut. R. Int. 17: 297-311.